Вследствие чего возникают гидрофобные взаимодействия
главная > справочник > химическая энциклопедия:
Гидрофобное взаимодействие
Экспериментальные исследования гидрофобного взаимодействия основываются на изучении растворимости инертных газов. углеводородов и др. неполярных веществ в воде, разнообразных термодинамич. и кинетич. свойств водных растворов орг. соед., сил взаимод. между макроскопич. неполярными пов-стями. Они тесно связаны с изучением структуры воды с применением разл. спектроскопич. методик (оптич. спектроскопии. диэлькометрии, ЯМР, рассеяния нейтронов и др.).
В теоретич. аспекте гидрофобное взаимодействие рассматривают в рамках общей проблемы влияния среды на меж молекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды пространственной сетки прочных водородных связей. Для такого внедрения требуется значит. затрата работы, т.е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в той или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит. расстояния по цепочкам водородных связей и обусловливать дальнодействие сил гидрофобного взаимодействия. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы; энтропийная природа >гидрофобного взаимодействия и проявляется в его усилении при повышении температуры.
Поскольку эффективный потенциал взаимод. молекул в жидкой среде (т. наз. потенциал средней силы) представляет собой суммарный результат взаимод. большого числа молекул, точное определение его параметров является сложной теоретич. задачей, решаемой в рамках разл. моделей жидкого состояния (см. Жидкость). Энергия гидрофобного взаимодействия неполярных молекул в воде, отвечающая глубине потенциальной ямы, т.е. эффективная энергия межмол. связи, может превосходить энергию дисперсионного взаимодействия этих же молекул в отсутствие среды (в вакууме). В отличие от потенциала взаимод. молекул в отсутствие среды потенциал гидрофобного взаимодействия имеет осциллирующий характер (наблюдается чередование минимумов и максимумов с периодом порядка диаметра молекул среды).
Взаимод. между неполярными частицами, аналогичные по своей гидрофобным взаимодействиям, имеют место не только в воде, но и в др. жидкостях с высокой когезионной энергией (высоким поверхностным натяжением), например в формамиде и глицерине. Это позволяет говорить о более общем явлении – лиофобном взаимодействии. Лиофобное взаимод. в принципе может осуществляться и между полярными веществами. Так, адгезия гидрофильных стеклянных частиц усиливается при погружении в ртуть и сопровождается образованием вакуумной полости в контакте между частицами вследствие несмачивания гидрофильных поверхностей ртутью.
Лит.: Пчелин В. А., Гидрофобные взаимодействия в дисперсных системах, М., 1976; Коагуляционные контакты в дисперсных системах, М., 1982. © В.В. Яминский.
Гидрофобные взаимодействия
Прежде, чем рассматривать природу гидрофобного взаимодействия, необходимо ввести понятие «гидрофильных» и «гидрофобных» функциональных групп.
Группы, которые могут образовывать водородные связи с молекулами воды, называются гидрофильными.
К этим группам относятся полярные группы: аминогруппа (-NH2), карбоксильная(-COOH), карбонильная группы(-CHO) и сульфгидрильная группа (-SH).
Как правило, гидрофильные соединения хорошо растворимы в воде. . Это обусловлено тем, что полярные группы способны образовывать водородные связи с молекулами воды.
Появление таких связей сопровождается выделением энергии, поэтому и возникает тенденция к максимальному увеличению поверхности контакта заряженных групп и воды (Рис. 2.3):
Рис. 2.3. Механизм образования гидрофобных и гидрофильных взаимодействий
Молекулы или части молекул, неспособные образовывать водородные связи с водой называются гидрофобными группами.
К этим группам относятся алкильные и ароматические радикалы, которые неполярны и не несут электрического заряда.
Гидрофобные группы – плохо или вовсе не растворимы в воде.
Это объясняется тем, что атомы и группы атомов, входящие в состав гидрофобных групп, являются электронейтральнымии (поэтому) не могут образовывать водородных связей с водой.
. Гидрофобные взаимодействия возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды.
В результате этого молекулы воды вытесняются на поверхность гидрофильных молекул (Рис. 2.3).
2.1.5. Ван-дер-ваальсовы взаимодействия.
В молекулах существуют также весьма слабые и короткодействующие силы притяжения между электрически нейтральными атомами и функциональными группами.
Это так называемые ван-дер-ваальсовые взаимодействия.
Они обусловлены электростатическим взаимодействием между отрицательно заряженными электронами одного атома и положительно заряженным ядром другого атома.
Так как ядра атомов экранированы окружающими их собственными электронами от ядер соседних атомов, то возникающие между различными атомами ван-дер-ваальсовы взаимодействия весьма невелики.
Все эти типы взаимодействий принимают участие в формировании, поддержании и стабилизации пространственной структуры (конформации) белковых молекул (Рис. 2.4):
Силы, которые способствуют формированию пространственной структуры белков и удерживающие её в стабильном состоянии, являются очень слабыми силами. Энергия этих сил на 2-3 порядка меньше энергии ковалентных связей. Они действуют между отдельными атомами и группами атомов.
Однако, огромное число атомов в молекулах биополимеров (белков), приводит к тому, что суммарная энергия этих слабых взаимодействий становится сравнима с энергией ковалентных связей.
Белки
В предыдущей лекции мы с вами говорили о том, что аминокислоты, соединяясь друг с другом посредством пептидных связей, образуют полипетиды.
. Белками являются полипетиды, способные образовывать и самостоятельно стабилизировать свою пространственную структуру.
Эта способность приобретается благодаря наличию большого числа слабых нековалентных взаимодействий и связана с числом аминокислотных остатков, образующих полипептидную цепочку.
Как правило, белками называют полипетиды, содержащие более 50 аминокислотных остатков.
Вместе с тем длина полипептидной цепи может достигать до нескольких тысяч остатков аминокислот; молекулярная масса белков колеблется от 6000 до 1 миллиона и более килодальтон.
ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ
ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ (от греч. hydor-вода и phobos-боязнь, страх), сильное притяжение в воде между неполярными частицами (молекулами, остатками сложных молекул, частицами дисперсной фазы и т. п.). Причина гидрофобного взаимодействия-большая энергия водородной связи между молекулами воды, превосходящая энергию их взаимод. с неполярными частицами. Термодинамич. невыгодность контакта воды с неполярными в-вами (рассматриваемая как гидрофобность) и предопределяет сильное притяжение их молекул друг к другу.
Гидрофобное взаимодействие между неполярными атомными группами (углеводородными, галогенуглеродными и т.п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние на их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Гидрофобное взаимодействие обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Гидрофобное взаимодействие-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами («маслами», гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С гидрофобным взаимодействием связана неустойчивость водных пленок между неполярными фазами, коагуляция и структурообразование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.).
Экспериментальные исследования гидрофобного взаимодействия основываются на изучении р-римости инертных газов, углеводородов и др. неполярных в-в в воде, разнообразных термодинамич. и кинетич. св-в водных р-ров орг. соед., сил взаимод. между макроскопич. неполярными пов-стями. Они тесно связаны с изучением структуры воды с применением разл. спектроскопич. методик (оптич. спектроскопии, диэлькометрии, ЯМР, рассеяния нейтронов и др.).
В теоретич. аспекте гидрофобное взаимодействие рассматривают в рамках общей проблемы влияния среды на меж молекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды пространственной сетки прочных водородных связей. Для такого внедрения требуется значит. затрата работы, т.е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в той или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит. расстояния по цепочкам водородных связей и обусловливать дальнодействие сил гидрофобного взаимодействия. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы; энтропийная природа гидрофобного взаимодействия и проявляется в его усилении при повышении т-ры.
Поскольку эффективный потенциал взаимод. молекул в жидкой среде (т. наз. потенциал средней силы) представляет собой суммарный результат взаимод. большого числа молекул, точное определение его параметров является сложной теоретич. задачей, решаемой в рамках разл. моделей жидкого состояния (см. Жидкость). Энергия гидрофобного взаимодействия неполярных молекул в воде, отвечающая глубине потенциальной ямы, т.е. эффективная энергия межмол. связи, может превосходить энергию дисперсионного взаимодействия этих же молекул в отсутствие среды (в вакууме). В отличие от потенциала взаимод. молекул в отсутствие среды потенциал гидрофобного взаимодействия имеет осциллирующий характер (наблюдается чередование минимумов и максимумов с периодом порядка диаметра молекул среды).
===
Исп. литература для статьи «ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ» : Пчелин В. А., Гидрофобные взаимодействия в дисперсных системах, М., 1976; Коагуляционные контакты в дисперсных системах, М., 1982. В. В. Я минский.
Страница «ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ» подготовлена по материалам химической энциклопедии.
Гидрофобные взаимодействия
Термин «гидрофобные взаимодействия» был предложен Ленгмюром еще в 1916 г. при выводе уравнения изотермы мономолекулярной адсорбции. Они возникают только в водных растворах в результате взаимодействия полярных молекул воды с неполярными гидрофобными частицами, молекулами (углеводородами) или неполярными радикалами молекул, в частности неполярными радикалами молекул ПАВ.
Гидрофобные взаимодействия вызваны особенностями структуры воды. Между молекулами воды образуются водородные связи (показаны пунктиром):
Энергия водородной связи между молекулами воды больше энергии взаимодействия молекул воды с неполярными частицами и радикалами.
Кроме того, вода является сильноассоциированной структурированной жидкостью. Наряду с упорядоченной, но рыхлой структурой (плотность структурированной твердой фазы — льда — меньше плотности воды) существует более плотная, лишенная упорядоченности структура. Растворение углеводородов в воде приводит к тому, что структура становится более упорядоченной. Следствием этого является увеличение числа водородных связей в воде.
Значительная энергия взаимодействия между молекулами воды за счет водородных связей и увеличение числа этих связей предопределяет притяжение гидрофобных частиц, т.е. гидрофобное взаимодействие. На рис. 5.6 схематически показано возникновение гидрофобных взаимодействий между двумя гидрофобными неполярными частицами 1 и 2. Эти частицы окружены молекулами воды, которые самопроизвольно ориентируются на границе с неполярной средой, образуя сначала максимально уплотненный мономолекулярный слой 3. Этот монослой является своеобразной «матрицей» для построения за счет водородных
связей следующих слоев 4 и образования структуры в объеме системы. Образовавшаяся вокруг частиц структура способствует сближению частиц. Таким
образом, неполярные частицы прижимаются друг к другу окружающими их молекулами воды.
Гидрофобные взаимодействия выполняют лишь ориентирующую функцию — они обеспечивают наиболее предпочтительный контакт между родственными гидрофобными частицами. Сам же контакт реализуется за счет межмолекулярных (ван-дер-ваальсовых), электростатических, донорно-акцепторных и других сил.
Возникновение гидрофобных взаимодействий получило термодинамическое обоснование. Процесс растворения в воде неполярных гидрофобных веществ, а также ПАВ, приводит к снижению энтропии (ΔS
Гидрофобные взаимодействия оказывают влияние на устойчивость дисперсных систем, мицеллообразование коллоидных ПАВ, конформацию белковых молекул, а также на ряд других явлений, которые будут рассмотрены в последующих главах.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ
(от греч. hydor-вода и phobos-боязнь, страх), сильное притяжение в воде между неполярными частицами (молекулами, остатками сложных молекул, частицами дисперсной фазы и т. п.). Причина Г. в.-большая энергия водородной связи между молекулами воды, превосходящая энергию их взаимод. с неполярными частицами. Термодинамич. невыгодность контакта воды с неполярными в-вами (рассматриваемая как гидрофобность) и предопределяет сильное притяжение их молекул друг к другу.
Г. в. между неполярными атомными группами (углеводородными, галогенуглеродными и т. п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние на их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Г. в. обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Г. в.-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами («маслами», гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С Г. в. связана неустойчивость водных пленок между неполярными фазами, коагуляция и структурообразование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.).
Экспериментальные исследования Г. в. основываются на изучении р-римости инертных газов, углеводородов и др. неполярных в-в в воде, разнообразных термодинамич. и кинетич. св-в водных р-ров орг. соед., сил взаимод. между макроскопич. неполярными пов-стями. Они тесно связаны с изучением структуры воды с применением разл. спектроскопич. методик (оптич. спектроскопии, диэлькометрии, ЯМР, рассеяния нейтронов и др.).
В теоретич. аспекте Г. в. рассматривают в рамках общей проблемы влияния среды на меж молекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды пространственной сетки прочных водородных связей. Для такого внедрения требуется значит. затрата работы, т. е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в той или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит. расстояния по цепочкам водородных связей и обусловливать дальнодействие сил Г. в. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы; энтропийная природа Г. в. и проявляется в его усилении при повышении т-ры.
Поскольку эффективный потенциал взаимод. молекул в жидкой среде (т. наз. потенциал средней силы) представляет собой суммарный результат взаимод. большого числа молекул, точное определение его параметров является сложной теоретич. задачей, решаемой в рамках разл. моделей жидкого состояния (см. Жидкость). Энергия Г. в. неполярных молекул в воде, отвечающая глубине потенциальной ямы, т. е. эффективная энергия межмол. связи, может превосходить энергию дисперсионного взаимодействия этих же молекул в отсутствие среды (в вакууме). В отличие от потенциала взаимод. молекул в отсутствие среды потенциал Г. в. имеет осциллирующий характер (наблюдается чередование минимумов и максимумов с периодом порядка диаметра молекул среды).
Лит.: Пчелин В. А., Гидрофобные взаимодействия в дисперсных системах, М., 1976; Коагуляционные контакты в дисперсных системах, М., 1982. В. В. Я минский.
Полезное
Смотреть что такое «ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ» в других словарях:
гидрофобное взаимодействие — Термин гидрофобное взаимодействие Термин на английском hydrofobic effect Синонимы гидрофобный эффект Аббревиатуры Связанные термины белки, биологическая мембрана, бислой, критическая концентрация мицеллообразования, критическая температура… … Энциклопедический словарь нанотехнологий
гидрофобное взаимодействие — hidrofobinė sąveika statusas T sritis chemija apibrėžtis Vandenyje pasireiškianti trauka tarp nepolinių mikrodalelių. atitikmenys: angl. hydrophobic interaction rus. гидрофобное взаимодействие … Chemijos terminų aiškinamasis žodynas
межплоскостное взаимодействие оснований — стэкинг взаимодействие Гидрофобное взаимодействие, обеспечивающее поддержание вторичной структуры двухцепочечной молекулы ДНК. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика… … Справочник технического переводчика
стэкинг-взаимодействие — base stacking межплоскостное взаимодействие оснований, стэкинг взаимодействие. Гидрофобное взаимодействие, обеспечивающее поддержание вторичной структуры двухцепочечной молекулы ДНК. (Источник: «Англо русский толковый словарь генетических… … Молекулярная биология и генетика. Толковый словарь.
Межплоскостное взаимодействие оснований стэкинг-в — Межплоскостное взаимодействие оснований, стэкинг в. * міжплоскаснае ўзаемадзянне асноў, стэкінг узаемадзеянне * base stacking гидрофобное взаимодействие, обеспечивающее поддержание вторичной структуры двухцепочечной молекулы ДНК … Генетика. Энциклопедический словарь
супрамолекулярная химия — Термин супрамолекулярная химия Термин на английском supramolecular chemistry Синонимы Аббревиатуры Связанные термины биомиметика, ван дер ваальсово взаимодействие, водородная связь, гидрофобное взаимодействие, донорно акцепторное взаимодействие,… … Энциклопедический словарь нанотехнологий
мицелла — Термин мицелла Термин на английском micelle Синонимы Аббревиатуры Связанные термины амфифильный, амфотерный сурфактант, биологические нанообъекты, гидрофобное взаимодействие, коллоидная химия, коллоидный раствор, критическая концентрация… … Энциклопедический словарь нанотехнологий
Наука — ПодразделыОбъекты, относящиеся к сфере нанотехнологийИскусственные (синтетические) низкоразмерные объектыНаноструктурыНаноматериалыПолучение, диагностика и сертификация наноразмерных системМетоды нанесения элементов наноструктур и… … Энциклопедический словарь нанотехнологий
Мембра́ны биологи́ческие — (лат. membrana оболочка, перепонка) функционально активные поверхностные структуры толщиной в несколько молекулярных слоев, ограничивающие цитоплазму и большинство органелл клетки, а также образующие единую внутриклеточную систему канальцев,… … Медицинская энциклопедия
молекулярное распознавание — Термин молекулярное распознавание Термин на английском molecular recognition Синонимы Аббревиатуры Связанные термины доставка генов, активный центр катализатора, антитело, белки, биомедицинские микроэлектромеханические системы, биосенсор,… … Энциклопедический словарь нанотехнологий