Вследствие чего возникают гидрофобные взаимодействия

главная > справочник > химическая энциклопедия:

Гидрофобное взаимодействие

Экспериментальные исследования гидрофобного взаимодействия основываются на изучении растворимости инертных газов. углеводородов и др. неполярных веществ в воде, разнообразных термодинамич. и кинетич. свойств водных растворов орг. соед., сил взаимод. между макроскопич. неполярными пов-стями. Они тесно связаны с изучением структуры воды с применением разл. спектроскопич. методик (оптич. спектроскопии. диэлькометрии, ЯМР, рассеяния нейтронов и др.).

В теоретич. аспекте гидрофобное взаимодействие рассматривают в рамках общей проблемы влияния среды на меж молекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды пространственной сетки прочных водородных связей. Для такого внедрения требуется значит. затрата работы, т.е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в той или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит. расстояния по цепочкам водородных связей и обусловливать дальнодействие сил гидрофобного взаимодействия. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы; энтропийная природа >гидрофобного взаимодействия и проявляется в его усилении при повышении температуры.

Поскольку эффективный потенциал взаимод. молекул в жидкой среде (т. наз. потенциал средней силы) представляет собой суммарный результат взаимод. большого числа молекул, точное определение его параметров является сложной теоретич. задачей, решаемой в рамках разл. моделей жидкого состояния (см. Жидкость). Энергия гидрофобного взаимодействия неполярных молекул в воде, отвечающая глубине потенциальной ямы, т.е. эффективная энергия межмол. связи, может превосходить энергию дисперсионного взаимодействия этих же молекул в отсутствие среды (в вакууме). В отличие от потенциала взаимод. молекул в отсутствие среды потенциал гидрофобного взаимодействия имеет осциллирующий характер (наблюдается чередование минимумов и максимумов с периодом порядка диаметра молекул среды).

Взаимод. между неполярными частицами, аналогичные по своей гидрофобным взаимодействиям, имеют место не только в воде, но и в др. жидкостях с высокой когезионной энергией (высоким поверхностным натяжением), например в формамиде и глицерине. Это позволяет говорить о более общем явлении – лиофобном взаимодействии. Лиофобное взаимод. в принципе может осуществляться и между полярными веществами. Так, адгезия гидрофильных стеклянных частиц усиливается при погружении в ртуть и сопровождается образованием вакуумной полости в контакте между частицами вследствие несмачивания гидрофильных поверхностей ртутью.

Лит.: Пчелин В. А., Гидрофобные взаимодействия в дисперсных системах, М., 1976; Коагуляционные контакты в дисперсных системах, М., 1982. © В.В. Яминский.

Источник

Гидрофобные взаимодействия

Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия

Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия

Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия

Прежде, чем рассматривать природу гидрофобного взаимодействия, необходимо ввести понятие «гидрофильных» и «гидрофобных» функциональных групп.

Группы, которые могут образовывать водородные связи с молекулами воды, называются гидрофильными.

К этим группам относятся полярные группы: аминогруппа (-NH2), карбоксильная(-COOH), карбонильная группы(-CHO) и сульфгидрильная группа (-SH).

Как правило, гидрофильные соединения хорошо растворимы в воде. . Это обусловлено тем, что полярные группы способны образовывать водородные связи с молекулами воды.

Появление таких связей сопровождается выделением энергии, поэтому и возникает тенденция к максимальному увеличению поверхности контакта заряженных групп и воды (Рис. 2.3):

Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия

Рис. 2.3. Механизм образования гидрофобных и гидрофильных взаимодействий

Молекулы или части молекул, неспособные образовывать водородные связи с водой называются гидрофобными группами.

К этим группам относятся алкильные и ароматические радикалы, которые неполярны и не несут электрического заряда.

Гидрофобные группыплохо или вовсе не растворимы в воде.

Это объясняется тем, что атомы и группы атомов, входящие в состав гидрофобных групп, являются электронейтральнымии (поэтому) не могут образовывать водородных связей с водой.

. Гидрофобные взаимодействия возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды.

В результате этого молекулы воды вытесняются на поверхность гидрофильных молекул (Рис. 2.3).

2.1.5. Ван-дер-ваальсовы взаимодействия.

В молекулах существуют также весьма слабые и короткодействующие силы притяжения между электрически нейтральными атомами и функциональными группами.

Это так называемые ван-дер-ваальсовые взаимодействия.

Они обусловлены электростатическим взаимодействием между отрицательно заряженными электронами одного атома и положительно заряженным ядром другого атома.

Так как ядра атомов экранированы окружающими их собственными электронами от ядер соседних атомов, то возникающие между различными атомами ван-дер-ваальсовы взаимодействия весьма невелики.

Все эти типы взаимодействий принимают участие в формировании, поддержании и стабилизации пространственной структуры (конформации) белковых молекул (Рис. 2.4):

Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия

Силы, которые способствуют формированию пространственной структуры белков и удерживающие её в стабильном состоянии, являются очень слабыми силами. Энергия этих сил на 2-3 порядка меньше энергии ковалентных связей. Они действуют между отдельными атомами и группами атомов.

Однако, огромное число атомов в молекулах биополимеров (белков), приводит к тому, что суммарная энергия этих слабых взаимодействий становится сравнима с энергией ковалентных связей.

Белки

В предыдущей лекции мы с вами говорили о том, что аминокислоты, соединяясь друг с другом посредством пептидных связей, образуют полипетиды.

. Белками являются полипетиды, способные образовывать и самостоятельно стабилизировать свою пространственную структуру.

Эта способность приобретается благодаря наличию большого числа слабых нековалентных взаимодействий и связана с числом аминокислотных остатков, образующих полипептидную цепочку.

Как правило, белками называют полипетиды, содержащие более 50 аминокислотных остатков.

Вместе с тем длина полипептидной цепи может достигать до нескольких тысяч остатков аминокислот; молекулярная масса белков колеблется от 6000 до 1 миллиона и более килодальтон.

Источник

ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ

ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ (от греч. hydor-вода и phobos-боязнь, страх), сильное притяжение в воде между неполярными частицами (молекулами, остатками сложных молекул, частицами дисперсной фазы и т. п.). Причина гидрофобного взаимодействия-большая энергия водородной связи между молекулами воды, превосходящая энергию их взаимод. с неполярными частицами. Термодинамич. невыгодность контакта воды с неполярными в-вами (рассматриваемая как гидрофобность) и предопределяет сильное притяжение их молекул друг к другу.

Гидрофобное взаимодействие между неполярными атомными группами (углеводородными, галогенуглеродными и т.п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние на их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Гидрофобное взаимодействие обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Гидрофобное взаимодействие-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами («маслами», гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С гидрофобным взаимодействием связана неустойчивость водных пленок между неполярными фазами, коагуляция и структурообразование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.).

Экспериментальные исследования гидрофобного взаимодействия основываются на изучении р-римости инертных газов, углеводородов и др. неполярных в-в в воде, разнообразных термодинамич. и кинетич. св-в водных р-ров орг. соед., сил взаимод. между макроскопич. неполярными пов-стями. Они тесно связаны с изучением структуры воды с применением разл. спектроскопич. методик (оптич. спектроскопии, диэлькометрии, ЯМР, рассеяния нейтронов и др.).

В теоретич. аспекте гидрофобное взаимодействие рассматривают в рамках общей проблемы влияния среды на меж молекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды пространственной сетки прочных водородных связей. Для такого внедрения требуется значит. затрата работы, т.е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в той или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит. расстояния по цепочкам водородных связей и обусловливать дальнодействие сил гидрофобного взаимодействия. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы; энтропийная природа гидрофобного взаимодействия и проявляется в его усилении при повышении т-ры.

Поскольку эффективный потенциал взаимод. молекул в жидкой среде (т. наз. потенциал средней силы) представляет собой суммарный результат взаимод. большого числа молекул, точное определение его параметров является сложной теоретич. задачей, решаемой в рамках разл. моделей жидкого состояния (см. Жидкость). Энергия гидрофобного взаимодействия неполярных молекул в воде, отвечающая глубине потенциальной ямы, т.е. эффективная энергия межмол. связи, может превосходить энергию дисперсионного взаимодействия этих же молекул в отсутствие среды (в вакууме). В отличие от потенциала взаимод. молекул в отсутствие среды потенциал гидрофобного взаимодействия имеет осциллирующий характер (наблюдается чередование минимумов и максимумов с периодом порядка диаметра молекул среды).

===
Исп. литература для статьи «ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ» : Пчелин В. А., Гидрофобные взаимодействия в дисперсных системах, М., 1976; Коагуляционные контакты в дисперсных системах, М., 1982. В. В. Я минский.

Страница «ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ» подготовлена по материалам химической энциклопедии.

Источник

Гидрофобные взаимодействия

Термин «гидрофобные взаимодействия» был предложен Ленгмюром еще в 1916 г. при выводе уравнения изотермы мономолекулярной адсорбции. Они возникают только в водных растворах в результате взаимодействия полярных молекул воды с неполярными гидрофобными частицами, молекулами (углеводородами) или неполярными радикалами молекул, в частности неполярными радикалами молекул ПАВ.

Гидрофобные взаимодействия вызваны особенностями структуры воды. Между молекулами воды образуются водородные связи (показаны пунктиром):

Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействияЭнергия водородной связи между молекулами воды больше энергии взаимодействия молекул воды с неполярными частицами и радикалами.

Кроме того, вода является сильноассоциированной структурированной жидкостью. Наряду с упорядоченной, но рыхлой структурой (плотность структурированной твердой фазы — льда — меньше плотности воды) существует более плотная, лишенная упорядоченности структура. Растворение углеводородов в воде приводит к тому, что структура становится более упорядоченной. Следствием этого является увеличение числа водородных связей в воде.

Значительная энергия взаимодействия между молекулами воды за счет водородных связей и увеличение числа этих связей предопределяет притяжение гидрофобных частиц, т.е. гидрофобное взаимодействие. На рис. 5.6 схематически показано возникновение гидрофобных взаимодействий между двумя гидрофобными неполярными частицами 1 и 2. Эти частицы окружены молекулами воды, которые самопроизвольно ориентируются на границе с неполярной средой, образуя сначала максимально уплотненный мономолекулярный слой 3. Этот монослой является своеобразной «матрицей» для построения за счет водородных

Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия

связей следующих слоев 4 и образования структуры в объеме системы. Образовавшаяся вокруг частиц структура способствует сближению частиц. Таким

Вследствие чего возникают гидрофобные взаимодействия. Смотреть фото Вследствие чего возникают гидрофобные взаимодействия. Смотреть картинку Вследствие чего возникают гидрофобные взаимодействия. Картинка про Вследствие чего возникают гидрофобные взаимодействия. Фото Вследствие чего возникают гидрофобные взаимодействия

образом, неполярные частицы прижимаются друг к другу окружающими их молекулами воды.

Гидрофобные взаимодействия выполняют лишь ориентирующую функцию — они обеспечивают наиболее предпочтительный контакт между родственными гидрофобными частицами. Сам же контакт реализуется за счет межмолекулярных (ван-дер-ваальсовых), электростатических, донорно-акцепторных и других сил.

Возникновение гидрофобных взаимодействий получило термодинамическое обоснование. Процесс растворения в воде неполярных гидрофобных веществ, а также ПАВ, приводит к снижению энтропии (ΔS

Гидрофобные взаимодействия оказывают влияние на устойчивость дисперсных систем, мицеллообразование коллоидных ПАВ, конформацию белковых молекул, а также на ряд других явлений, которые будут рассмотрены в последующих главах.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ

(от греч. hydor-вода и phobos-боязнь, страх), сильное притяжение в воде между неполярными частицами (молекулами, остатками сложных молекул, частицами дисперсной фазы и т. п.). Причина Г. в.-большая энергия водородной связи между молекулами воды, превосходящая энергию их взаимод. с неполярными частицами. Термодинамич. невыгодность контакта воды с неполярными в-вами (рассматриваемая как гидрофобность) и предопределяет сильное притяжение их молекул друг к другу.

Г. в. между неполярными атомными группами (углеводородными, галогенуглеродными и т. п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние на их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Г. в. обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Г. в.-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами («маслами», гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С Г. в. связана неустойчивость водных пленок между неполярными фазами, коагуляция и структурообразование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.).

Экспериментальные исследования Г. в. основываются на изучении р-римости инертных газов, углеводородов и др. неполярных в-в в воде, разнообразных термодинамич. и кинетич. св-в водных р-ров орг. соед., сил взаимод. между макроскопич. неполярными пов-стями. Они тесно связаны с изучением структуры воды с применением разл. спектроскопич. методик (оптич. спектроскопии, диэлькометрии, ЯМР, рассеяния нейтронов и др.).

В теоретич. аспекте Г. в. рассматривают в рамках общей проблемы влияния среды на меж молекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды пространственной сетки прочных водородных связей. Для такого внедрения требуется значит. затрата работы, т. е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в той или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит. расстояния по цепочкам водородных связей и обусловливать дальнодействие сил Г. в. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы; энтропийная природа Г. в. и проявляется в его усилении при повышении т-ры.

Поскольку эффективный потенциал взаимод. молекул в жидкой среде (т. наз. потенциал средней силы) представляет собой суммарный результат взаимод. большого числа молекул, точное определение его параметров является сложной теоретич. задачей, решаемой в рамках разл. моделей жидкого состояния (см. Жидкость). Энергия Г. в. неполярных молекул в воде, отвечающая глубине потенциальной ямы, т. е. эффективная энергия межмол. связи, может превосходить энергию дисперсионного взаимодействия этих же молекул в отсутствие среды (в вакууме). В отличие от потенциала взаимод. молекул в отсутствие среды потенциал Г. в. имеет осциллирующий характер (наблюдается чередование минимумов и максимумов с периодом порядка диаметра молекул среды).

Лит.: Пчелин В. А., Гидрофобные взаимодействия в дисперсных системах, М., 1976; Коагуляционные контакты в дисперсных системах, М., 1982. В. В. Я минский.

Полезное

Смотреть что такое «ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ» в других словарях:

гидрофобное взаимодействие — Термин гидрофобное взаимодействие Термин на английском hydrofobic effect Синонимы гидрофобный эффект Аббревиатуры Связанные термины белки, биологическая мембрана, бислой, критическая концентрация мицеллообразования, критическая температура… … Энциклопедический словарь нанотехнологий

гидрофобное взаимодействие — hidrofobinė sąveika statusas T sritis chemija apibrėžtis Vandenyje pasireiškianti trauka tarp nepolinių mikrodalelių. atitikmenys: angl. hydrophobic interaction rus. гидрофобное взаимодействие … Chemijos terminų aiškinamasis žodynas

межплоскостное взаимодействие оснований — стэкинг взаимодействие Гидрофобное взаимодействие, обеспечивающее поддержание вторичной структуры двухцепочечной молекулы ДНК. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика… … Справочник технического переводчика

стэкинг-взаимодействие — base stacking межплоскостное взаимодействие оснований, стэкинг взаимодействие. Гидрофобное взаимодействие, обеспечивающее поддержание вторичной структуры двухцепочечной молекулы ДНК. (Источник: «Англо русский толковый словарь генетических… … Молекулярная биология и генетика. Толковый словарь.

Межплоскостное взаимодействие оснований стэкинг-в — Межплоскостное взаимодействие оснований, стэкинг в. * міжплоскаснае ўзаемадзянне асноў, стэкінг узаемадзеянне * base stacking гидрофобное взаимодействие, обеспечивающее поддержание вторичной структуры двухцепочечной молекулы ДНК … Генетика. Энциклопедический словарь

супрамолекулярная химия — Термин супрамолекулярная химия Термин на английском supramolecular chemistry Синонимы Аббревиатуры Связанные термины биомиметика, ван дер ваальсово взаимодействие, водородная связь, гидрофобное взаимодействие, донорно акцепторное взаимодействие,… … Энциклопедический словарь нанотехнологий

мицелла — Термин мицелла Термин на английском micelle Синонимы Аббревиатуры Связанные термины амфифильный, амфотерный сурфактант, биологические нанообъекты, гидрофобное взаимодействие, коллоидная химия, коллоидный раствор, критическая концентрация… … Энциклопедический словарь нанотехнологий

Наука — ПодразделыОбъекты, относящиеся к сфере нанотехнологийИскусственные (синтетические) низкоразмерные объектыНаноструктурыНаноматериалыПолучение, диагностика и сертификация наноразмерных системМетоды нанесения элементов наноструктур и… … Энциклопедический словарь нанотехнологий

Мембра́ны биологи́ческие — (лат. membrana оболочка, перепонка) функционально активные поверхностные структуры толщиной в несколько молекулярных слоев, ограничивающие цитоплазму и большинство органелл клетки, а также образующие единую внутриклеточную систему канальцев,… … Медицинская энциклопедия

молекулярное распознавание — Термин молекулярное распознавание Термин на английском molecular recognition Синонимы Аббревиатуры Связанные термины доставка генов, активный центр катализатора, антитело, белки, биомедицинские микроэлектромеханические системы, биосенсор,… … Энциклопедический словарь нанотехнологий

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *