коммутатор какой уровень osi
📑 Устройства канального уровня модели OSI (L2)
С канальным уровнем обычно связаны следующие сетевые соединительные устройства:
В сетях Ethernet используется метод доступа к среде передачи данных, называемый метод коллективного доступа с опознаванием несущей и обнаружением коллизий (CS MA/CD).
Этот метод используется исключительно в сетях с общей шиной. Все интерфейсы, подключенные к среде передачи данных, могут распознать факт передачи кадра, и интерфейс, который узнает собственный MAC-адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные и посылает кадр-ответ.
В технологии Ethernet существует такое понятие, как домен коллизий. Домен коллизий – часть сети, все узлы которой распознают коллизии, не зависимо от того, где она возникла. Сеть Ethernet, построенная на повторителях или концентраторах всегда образует один домен коллизий.
Для предотвращения коллизий крупные локальные сети делятся на сегменты или, как их еще называют, домены коллизий, с помощью коммутаторов (switches). Каждый порт коммутатора оснащен процессором, память которого позволяет создавать буфер для хранения поступающих кадров. Общее управление процессорами портов осуществляет системный модуль. Наличие отдельного процессора на каждом порту является основным отличием коммутатора от моста, где присутствует один процессор. В настоящее время коммутаторы практически полностью вытеснили мосты.
Каждый сегмент, образованный портом (интерфейсом) коммутатора с присоединенным к нему узлом (компьютером) или с концентратором со многими узлами, является доменом (сегментом) коллизий. При возникновении коллизии в сети, реализованной на концентраторе, сигнал коллизии распространяется по всем портам концентратора. Однако на другие порты коммутатора сигнал коллизии не передается.
Существует два режима двусторонней связи: полудуплексный (halfduplex) и полнодуплексный (full-duplex). В полудуплексном режиме в любой момент времени одна станция может либо вести передачу, либо принимать данные. В полнодуплексном режиме абонент может одновременно принимать и передавать информацию, т. е. обе станции в соединении «точка- точка» могут передавать данные в любое время, независимо от того, передает ли другая станция. Для разделяемой среды полудуплексный режим является обязательным. Ранее создававшиеся сети Ethernet на коаксиальном кабеле были только полудуплексными. Витая пара и оптическое волокно могут использоваться в сетях, работающих в обоих режимах.
Новые высокоскоростные сети 10-GigabitEthernet работают только в полнодуплексном режиме. Большинство коммутаторов могут использовать как полудуплексный, так и полнодуплексный режим.
В случае присоединения компьютеров (хостов) индивидуальными линиями к портам коммутатора каждый узел вместе с портом образует микросегмент. В сети, узлы которой соединены с коммутатором индивидуальными линиями и работающей в полудуплексном режиме, возможны коллизии, если одновременно начнут работать передатчики коммутатора и сетевого интерфейса узла.
В полнодуплексном режиме работы коллизий при микросегментации не возникает. При одновременной передаче данных от двух источников одному адресату буферизация кадров позволяет запомнить и передать кадры поочередно и, следовательно, избежать их потери. Отсутствие коллизий обусловило широкое применение топологии сети с индивидуальным подключением узлов к портам коммутатора.
Коммутатор является устройством второго (канального) уровня семиуровневой модели ISO OSI, в котором для адресации используются МАС-адреса. Адресация происходит на основе МАС-адресов сетевых интерфейсов узлов.
Для того, чтобы передавать кадры (фреймы), коммутатор использует три базовых механизма:
Для передачи кадров применяется алгоритм, определяемый стандартом 802.1D. Реализация алгоритма происходит за счет создания статических или динамических записей адресной таблицы коммутации. Статические записи таблицы создаются администратором. В общем случае коммутатор можно вообще не конфигурировать, он будет работать по умолчанию, создавая записи адресной таблицы в динамическом режиме. При этом в буферной памяти порта запоминаются все поступившие на порт кадры.
Первоначально информация о том, какие МАС-адреса имеют подключенные к конкретному порту интерфейсы, в коммутаторе отсутствует. Поэтому коммутатор, получив кадр, передает его на все свои порты, за исключением того, на который кадр был получен, и одновременно анализирует МАС-адрес источника и запоминает его в адресной таблице.
Когда адресная таблица коммутации сформирована, продвижение кадров с входного интерфейса коммутатора на выходной происходит на основании записей в адресной таблице. При получении кадра коммутатор проверяет, существует ли МАС-адрес узла назначения в таблице коммутации. При обнаружении адресата в таблице коммутатор производит еще одну проверку: находятся ли адресат и источник в одном сегменте. Если они в разных сегментах, то коммутатор производит продвижение (forwarding) кадра в порт, к которому подключен узел назначения. Если адресат и источник находятся в одном сегменте, например оба подключены к одному концентратору, то передавать кадр на другой порт не нужно. В этом случае кадр должен быть удален из буфера порта, что называется фильтрацией (filtering) кадров.
С появлением в сети новых узлов адресная таблица пополняется. Если в течение определенного времени (обычно 300 с) какой-то узел не передает данные, то считается, что он в сети отсутствует, тогда соответствующая запись из таблицы удаляется. При необходимости администратор может включать в таблицу статические записи, которые не удаляются динамически. Такую запись может удалить только сам администратор.
При получении кадров с широковещательными адресами (FF:FF:FF:FF:FF:FF) коммутатор передает их на все свои порты. Иногда если какой-либо узел из-за сбоя или злонамеренно начинает генерировать кадры с широковещательными адресами, то сеть очень быстро оказывается перегруженной, наступает широковещательный шторм (broadcast storm) и сеть «падает». С широковещательным штормом и излишним количеством широковещательных сообщений может бороться только маршрутизатор, который делит сеть на широковещательные домены.
Коммутаторы могут работать в нескольких режимах, при изменении которых меняются задержка и надежность. Для обеспечения максимального быстродействия коммутатор может начинать передачу кадра сразу, как только получит МАС-адрес узла назначения. Такой режим получил название сквозной коммутации или коммутации «на лету» (cut-through switching), он обеспечивает наименьшую задержку при прохождении кадров через коммутатор. Однако в этом режиме невозможен контроль ошибок, поскольку поле контрольной суммы находится в конце кадра. Следовательно, этот режим характеризуется низкой надежностью.
Во втором режиме коммутатор получает кадр целиком, помещает его в буфер, проверяет поле контрольной суммы (FCS) и затем пересылает адресату. Если получен кадр с ошибками, то он отбрасывается (discarded) коммутатором. Поскольку кадр перед отправкой адресату назначения запоминается в буферной памяти, такой режим коммутации получил название коммутации с промежуточным хранением или буферизацией.
Самый простой и распространенный типа коммутатора — «неуправляемый» (unmanaged). Неуправляемые коммутаторы реализуют только физическую топологию сети, они могут передавать кадры, но не поддерживают протоколы, которые требуют настройки самого коммутатора, в частности, RSTP и VLAN. Поскольку коммутатор неуправляемый, то и настраивать там нечего, все, что он реализует, работает либо автоматически (например, определение скорости и кроссировки), либо является защитным механизмом (например, защита от широковещательного шторма). Такие коммутаторы обычно устанавливаются для подключения пользователей как наиболее недорогие.
Следующий, уже более «продвинутый», тип коммутатора — «настраиваемый» (smart). Этот тип может содержать поддержку протоколов логической топологии и некоторых других, таких, как транкование и VLAN, поскольку поддерживает настройку. Он является переходным звеном между неуправляемыми и управляемыми коммутаторами, и обычно применяется там, где функционал неуправляемого недостаточен, а управляемого избыточен.
Самый «умный» тип коммутатора — «управляемый» (manageable). Он уже поддерживает не только настройку «умных» протоколов, но и мониторинг портов, что позволяет, например, снимать статистику по переданному трафику и количеству ошибок для каждого порта. Это самый дорогой тип коммутатора второго уровня, поскольку он же самый функциональный.
Существуют также коммутаторы третьего уровня, они управляемые по определению, но являются гибридом коммутатора и маршрутизатора и будут рассматриваться в статье про третий уровень модели OSI.
По типу исполнения коммутаторы бывают фиксированными, когда уже все порты установлены в коммутаторе, гибридными, когда часть портов установлена, но имеются гнезда для расширения, и модульными, когда коммутатор вообще не содержит портов, а предназначен для установки модулей расширения, которые и содержат порты.
Тип исполнения коммутатора выбирается исходя из текущих потребностей и планов развития. Например, если на данный момент требуется коммутатор с портом Gigabit Ethernet для витой пары, но планируется перевести магистральные каналы на оптику, то стоит покупать гибридный коммутатор с гнездом для модулей GBIC или SFP, что позволит в дальнейшем просто заменить модуль на оптической, но не менять весь коммутатор. Модульные коммутаторы еще более универсальны и применяются обычно в тех местах, где требуются несколько типов портов. Плата за любую универсальность — стоимость, так что выбрать коммутатор нужно, в том числе, и по этому параметру.
Существует технология, которая позволяет подавать питание на небольшие сетевые устройства (такие как точки беспроводного доступа и маршрутизаторы) по той же витой паре, что они подключаются к коммутатору. В некоторых случаях это позволяет установить малогабаритное сетевое оборудование в местах, где это наиболее удобно, но там отсутствует электропроводка. Для подачи питания по витой паре используются либо коммутаторы с поддержкой технологии Power Over Ethernet (PoE), либо многопортовые инжекторы питания для монтажа в стойку, либо индивидуальные инжекторы для включения в разрыв одного кабеля. Неоспоримая польза этой технологии в том, что в случае организации питания PoE-коммутатора от источника бесперебойного питания, в случае падения напряжения питание будет подаваться не только на этот коммутатор, но и на все устройства, подключенные к нему по технологии PoE, что существенно повысит надежность сети на случай проблем с электропитанием.
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
Модель OSI – это просто!
Модель Open Systems Interconnection (OSI) – это скелет, фундамент и база всех сетевых сущностей. Модель определяет сетевые протоколы, распределяя их на 7 логических уровней. Важно отметить, что в любом процессе, управление сетевой передачей переходит от уровня к уровню, последовательно подключая протоколы на каждом из уровней.
Полный курс по Сетевым Технологиям
В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer
Видео: модель OSI за 7 минут
Нижние уровни отвечают за физические параметры передачи, такие как электрические сигналы. Да – да, сигналы в проводах передаются с помощью представления в токи 🙂 Токи представляются в виде последовательности единиц и нулей (1 и 0), затем, данные декодируются и маршрутизируются по сети. Более высокие уровни охватывают запросы, связанные с представлением данных. Условно говоря, более высокие уровни отвечают за сетевые данные с точки зрения пользователя.
Модель OSI была изначально придумана как стандартный подход, архитектура или паттерн, который бы описывал сетевое взаимодействие любого сетевого приложения. Давайте разберемся поподробнее?
#01: Физический (physical) уровень
На первом уровне модели OSI происходит передача физических сигналов (токов, света, радио) от источника к получателю. На этом уровне мы оперируем кабелями, контактами в разъемах, кодированием единиц и нулей, модуляцией и так далее.
Отметим, что в качестве носителя данных могут выступать не только электрические токи. Радиочастоты, световые или инфракрасные волны используются также повсеместно в современных сетях.
Сетевые устройства, которые относят к первому уровню это концентраторы и репитеры – то есть «глупые» железки, которые могут просто работать с физическим сигналом, не вникая в его логику (не декодируя).
#02: Канальный (data Link) уровень
Представьте, мы получили физический сигнал с первого уровня – физического. Это набор напряжений разной амплитуды, волн или радиочастот. При получении, на втором уровне проверяются и исправляются ошибки передачи. На втором уровне мы оперируем понятием «фрейм», или как еще говорят «кадр». Тут появляются первые идентификаторы – MAC – адреса. Они состоят из 48 бит и выглядят примерно так: 00:16:52:00:1f:03.
Канальный уровень сложный. Поэтому, его условно говоря делят на два подуровня: управление логическим каналом (LLC, Logical Link Control) и управление доступом к среде (MAC, Media Access Control).
На этом уровне обитают такие устройства как коммутаторы и мосты. Кстати! Стандарт Ethernet тоже тут. Он уютно расположился на первом и втором (1 и 2) уровнях модели OSI.
#03: Сетевой (network) уровень
Идем вверх! Сетевой уровень вводит термин «маршрутизация» и, соответственно, IP – адрес. Кстати, для преобразования IP – адресов в MAC – адреса и обратно используется протокол ARP.
Именно на этом уровне происходит маршрутизация трафика, как таковая. Если мы хотим попасть на сайт wiki.merionet.ru, то мы отправляем DNS – запрос, получаем ответ в виде IP – адреса и подставляем его в пакет. Да – да, если на втором уровне мы используем термин фрейм/кадр, как мы говорили ранее, то здесь мы используем пакет.
Из устройств здесь живет его величество маршрутизатор 🙂
Процесс, когда данные передаются с верхних уровней на нижние называется инкапсуляцией данных, а когда наоборот, наверх, с первого, физического к седьмому, то этот процесс называется декапсуляцией данных
#04: Транспортный (transport) уровень
Транспортный уровень, как можно понять из названия, обеспечивает передачу данных по сети. Здесь две основных рок – звезды – TCP и UDP. Разница в том, что различный транспорт применяется для разной категории трафика. Принцип такой:
#05: Сеансовый (session) уровень
Попросите любого сетевого инженера объяснить вам сеансовый уровень. Ему будет трудно это сделать, инфа 100%. Дело в том, что в повседневной работе, сетевой инженер взаимодействует с первыми четырьмя уровнями – физическим, канальным, сетевым и транспортным. Остальные, или так называемые «верхние» уровни относятся больше к работе разработчиков софта 🙂 Но мы попробуем!
Сеансовый уровень занимается тем, что управляет соединениями, или попросту говоря, сессиями. Он их разрывает. Помните мем про «НЕ БЫЛО НИ ЕДИНОГО РАЗРЫВА»? Мы помним. Так вот, это пятый уровень постарался 🙂
#06 Уровень представления (presentation)
На шестом уровне творится преобразование форматов сообщений, такое как кодирование или сжатие. Тут живут JPEG и GIF, например. Так же уровень ответственен за передачу потока на четвертый (транспортный уровень).
#07 Уровень приложения (application)
На седьмом этаже, на самой верхушке айсберга, обитает уровень приложений! Тут находятся сетевые службы, которые позволяют нам, как конечным пользователям, серфить просторы интернета. Гляньте, по какому протоколу у вас открыта наша база знаний? Правильно, HTTPS. Этот парень с седьмого этажа. Еще тут живут простой HTTP, FTP и SMTP.
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
Модель OSI. Нижние уровни
Преимущество подобных концентраторов по сравнению с отдельными репитерами в том, что все точки подключения собраны в одном месте, это упрощает реконфигурацию сети, контроль и поиск неисправностей. К тому же все репитеры в данном случае питаются от единого качественного источника питания.
Коммутаторы (свичи, коммутирующие концентраторы, switch), как и концентраторы, служат для соединения сегментов в сеть. Они также выполняют более сложные функции, производя сортировку поступающих на них пакетов.
Коммутаторы передают из одного сегмента сети в другой не все поступающие на них пакеты, а только те, которые адресованы компьютерам из другого сегмента. Пакеты, передаваемые между абонентами одного сегмента, через коммутатор не проходят. При этом сам пакет коммутатором не принимается, а только пересылается. Интенсивность обмена в сети снижается вследствие разделения нагрузки, поскольку каждый сегмент работает не только со своими пакетами, но и с пакетами, пришедшими из других сегментов.
Подробнее промежуточные сетевые устройства будут рассмотрены в разделах, посвященных конкретным стандартным локальным сетям.
Канальный уровень сетевой модели OSI
5.6. Режимы коммутации
Для буферизации коммутатор может использовать буферную память портов или общую память коммутатора. Во втором случае требуемый каждому порту объем памяти выделяется динамически, что позволяет успешно реализовать асимметричную коммутацию.
5.7. Параметры коммутаторов
Выбор коммутаторов для проектируемой сети определяется рядом параметров: скоростью фильтрации кадров, скоростью продвижения кадров, пропускной способностью, длительностью задержки передачи кадра, а также возможностью подачи питания на конечный узел по кабелю Ethernet (PoE), конструктивными особенностями коммутатора (конфигурацией) и другими характеристиками.
Скорость продвижения кадров определяется временем приема кадра, запоминанием его в буфере, обращением к адресной таблице и передачей кадра с входного порта на выходной, который связан с устройством назначения. Скорость фильтрации и скорость продвижения задаются в кадрах в секунду, причем, для оценки этих параметров обычно берутся кадры минимальной длины 64 байта.
Пропускная способность коммутатора определяется количеством передаваемых данных, содержащихся в поле Data кадра, в единицу времени. Пропускная способность достигает своего максимального значения при передаче кадров максимальной длины.
Задержка передачи кадров определяется временем от момента появления первого байта кадра на входном порте коммутатора до момента появления этого байта на выходном порте. В зависимости от режима коммутации время задержки составляет от единиц до сотен микросекунд.
Конструктивно коммутатор может быть фиксированной или модульной конфигурации. Коммутатор фиксированной конфигурации содержит определенное количество портов, например, 24 порта FastEthernet и 2 порта GigabitEthernet, и эту конфигурацию изменить нельзя. В коммутаторах модульной конфигурации пользователь может устанавливать требуемое количество модулей портов в пределах возможностей линейной платы. Добавление новой линейной платы увеличивает количество портов и повышает плотность портов. Стекируемые (наращиваемые) коммутаторы соединяются между собой специальным кабелем, образуя единое мощное сетевое устройство.
5.8. Коммутаторы второго и третьего уровня
а) | б) |
Рис. 5.19. Элементы сети |
Коммутаторы уровня 3 фирмы Catalyst функционируют на базе технологии Cisco Express Forwarding (CEF), которая для пересылки данных создает и поддерживает базу данных о переадресации ( FIB ) и таблицу смежности.
У коммутаторов уровня 3 существует три основных типа интерфейсов:
Протокол STP
Когда сеть строится с использованием топологии иерархического дерева, то коммутационные петли отсутствуют. Однако сети часто проектируются с избыточными путями, чтобы обеспечить надежность и устойчивость сети ( рис. 5.20).
Избыточные пути могут приводить к образованию коммутационных петель, что, в свою очередь, может привести к широковещательному шторму и обрушению сети.
Таким образом, протокол STP используется для создания логической иерархии без петель, т.е. даже при наличии физических петель, логические петли отсутствуют. Каждый коммутатор в локальной сети рассылает уведомления STP во все свои порты, чтобы позволять другим коммутаторам знать о их существовании. Эта информация используется, чтобы выбрать корневой коммутатор для сети. Протокол STP создает древовидную топологию, где от каждого коммутатора и от каждого сегмента сети будет единственный путь минимальной длины до корневого коммутатора. Для определения длины пути используется соответствующая метрика.
Каждый порт коммутатора, который используя STP, находится в одном из следующих 5 состояний:
Подробности работы протокола STP приведены во второй части настоящего курса. Существенным недостатком протокола STP является слишком долгое время формирования новой конфигурации сети, которое может составлять значение порядка минут. Ускорение процесса формирования новой конфигурации сети достигнуто за счет разработки быстродействующих протоколов, среди которых наиболее известен протокол Rapid Spanning Tree Protocol (RSTP), специфицированный организацией IEEE как 802.1D-2004, затем как 802.1W.
Канальный уровень сетевой модели OSI
5.6. Режимы коммутации
Для буферизации коммутатор может использовать буферную память портов или общую память коммутатора. Во втором случае требуемый каждому порту объем памяти выделяется динамически, что позволяет успешно реализовать асимметричную коммутацию.
5.7. Параметры коммутаторов
Выбор коммутаторов для проектируемой сети определяется рядом параметров: скоростью фильтрации кадров, скоростью продвижения кадров, пропускной способностью, длительностью задержки передачи кадра, а также возможностью подачи питания на конечный узел по кабелю Ethernet (PoE), конструктивными особенностями коммутатора (конфигурацией) и другими характеристиками.
Скорость продвижения кадров определяется временем приема кадра, запоминанием его в буфере, обращением к адресной таблице и передачей кадра с входного порта на выходной, который связан с устройством назначения. Скорость фильтрации и скорость продвижения задаются в кадрах в секунду, причем, для оценки этих параметров обычно берутся кадры минимальной длины 64 байта.
Пропускная способность коммутатора определяется количеством передаваемых данных, содержащихся в поле Data кадра, в единицу времени. Пропускная способность достигает своего максимального значения при передаче кадров максимальной длины.
Задержка передачи кадров определяется временем от момента появления первого байта кадра на входном порте коммутатора до момента появления этого байта на выходном порте. В зависимости от режима коммутации время задержки составляет от единиц до сотен микросекунд.
Конструктивно коммутатор может быть фиксированной или модульной конфигурации. Коммутатор фиксированной конфигурации содержит определенное количество портов, например, 24 порта FastEthernet и 2 порта GigabitEthernet, и эту конфигурацию изменить нельзя. В коммутаторах модульной конфигурации пользователь может устанавливать требуемое количество модулей портов в пределах возможностей линейной платы. Добавление новой линейной платы увеличивает количество портов и повышает плотность портов. Стекируемые (наращиваемые) коммутаторы соединяются между собой специальным кабелем, образуя единое мощное сетевое устройство.
5.8. Коммутаторы второго и третьего уровня
а) | б) |
Рис. 5.19. Элементы сети |
Коммутаторы уровня 3 фирмы Catalyst функционируют на базе технологии Cisco Express Forwarding (CEF), которая для пересылки данных создает и поддерживает базу данных о переадресации ( FIB ) и таблицу смежности.
У коммутаторов уровня 3 существует три основных типа интерфейсов:
Протокол STP
Когда сеть строится с использованием топологии иерархического дерева, то коммутационные петли отсутствуют. Однако сети часто проектируются с избыточными путями, чтобы обеспечить надежность и устойчивость сети ( рис. 5.20).
Избыточные пути могут приводить к образованию коммутационных петель, что, в свою очередь, может привести к широковещательному шторму и обрушению сети.
Таким образом, протокол STP используется для создания логической иерархии без петель, т.е. даже при наличии физических петель, логические петли отсутствуют. Каждый коммутатор в локальной сети рассылает уведомления STP во все свои порты, чтобы позволять другим коммутаторам знать о их существовании. Эта информация используется, чтобы выбрать корневой коммутатор для сети. Протокол STP создает древовидную топологию, где от каждого коммутатора и от каждого сегмента сети будет единственный путь минимальной длины до корневого коммутатора. Для определения длины пути используется соответствующая метрика.
Каждый порт коммутатора, который используя STP, находится в одном из следующих 5 состояний:
Подробности работы протокола STP приведены во второй части настоящего курса. Существенным недостатком протокола STP является слишком долгое время формирования новой конфигурации сети, которое может составлять значение порядка минут. Ускорение процесса формирования новой конфигурации сети достигнуто за счет разработки быстродействующих протоколов, среди которых наиболее известен протокол Rapid Spanning Tree Protocol (RSTP), специфицированный организацией IEEE как 802.1D-2004, затем как 802.1W.