какую окружность называют описанной около треугольника
Окружность, описанная около треугольника
Что такое окружность, описанная около треугольника? Что является центром этой окружности? Как расположение центра описанной окружности зависит от вида треугольника?
Окружность называется описанной около треугольника, если все вершины треугольника лежат на окружности.
Расстояние от любой вершины треугольника до центра описанной окружности равно радиусу этой окружности.
Окружность можно описать около любого треугольника.
Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника (то есть отрезков, перпендикулярных к сторонам треугольника и проходящих через середины этих сторон).
Центр окружности, описанной около остроугольного треугольника, лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.
Центр окружности, описанной около тупоугольного треугольника, лежит вне треугольника (напротив тупого угла, за большей стороной).
Окружность, описанная около треугольника
Определение окружности, описанной около треугольника
Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).
Теорема об окружности, описанной около треугольника
Теорема 1. Около любого треугольника можно описать окружность.
Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.
Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.
Замечание 1. Около любого треугольника можно описать только одну окружность.
Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.
Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Серединный перпендикуляр к отрезку
Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.
Полученное противоречие и завершает доказательство теоремы 2
Окружность, описанная около треугольника
Свойства описанной около треугольника окружности. Теорема синусов
Фигура | Рисунок | Свойство | |
Серединные перпендикуляры к сторонам треугольника | Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство | ||
Окружность, описанная около треугольника | Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство | ||
Центр описанной около остроугольного треугольника окружности | Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. | ||
Центр описанной около прямоугольного треугольника окружности | Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство | ||
Центр описанной около тупоугольного треугольника окружности | Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. | ||
Теорема синусов |
Серединные перпендикуляры к сторонам треугольника |
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Для любого треугольника справедливы равенства (теорема синусов):
,
Для любого треугольника справедливо равенство:
Для любого треугольника справедливо равенство:
Доказательства теорем о свойствах описанной около треугольника окружности
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
При доказательстве теоремы 3 было получено равенство:
.
Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):
Какую окружность называют описанной около треугольника
Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность
Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.
Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.
Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.
Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности
Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.
Окружность называется описанной около треугольника, если она проходит через три его вершины.
Окружность, вписанная в прямоугольный треугольник
Окружность, описанная около прямоугольного треугольника
Четырехугольник, вписанный в окружность
Окружность, вписанная в ромб
Описанная окружность
Что такое описанная окружность? Какими свойствами она обладает?
Описанная около выпуклого многоугольника окружность — это окружность, которая проходит через все вершины многоугольника.
Многоугольник, около которого описана окружность, называется вписанным.
В выпуклый многоугольник можно вписать окружность, если все серединные перпендикуляры к его сторонам пересекаются в одной точке.
Центр вписанной в многоугольник окружности — точка пересечения серединных перпендикуляров к его сторонам.
Центр описанной окружности равноудалён от вершин многоугольника.
Расстояние от центра до любой вершины многоугольника равно радиусу описанной окружности.
Окружность с центром в точке O и радиусом R описана около пятиугольника ABCDE.
ABCDE — вписанный пятиугольник.
O — точка пересечения серединных перпендикуляров к сторонам ABCD, то есть
Точка O равноудалена от вершин пятиугольника.
Расстояние от точки O до любой вершины равно радиусу:
Около любого правильного многоугольника можно описать окружность. В любой правильный многоугольник также можно вписать окружность. Центр вписанной и описанной окружности лежат в центре правильного многоугольника.
В отличие от вписанной окружности, общей формулы для нахождения радиуса описанной около многоугольника окружности нет. Радиус описанной окружности можно найти как радиус окружности, описанной около любого из треугольников, вершины которого являются вершинами описанного многоугольника.
Например, для описанного пятиугольника ABCDE радиус можно найти как радиус окружности, описанной около одного из треугольников ABC, ABD, ABE, BCD, BCE, ACD, ADE и т.д.
Формулы для нахождения радиуса описанной окружности существуют в частных случаях: для правильных многоугольников, треугольников, прямоугольника.
2 Comments
Огромное спасибо за все статьи, что есть на этом сайте! Благодаря вам восполнила пробелы в теории, из-за которых не могла решить задачки, и теперь щёлкаю задания как орехи. Лучший сайт по геометрии!
- какую стартовую шпаклевку выбрать для стен
- Нашел золотую цепь во сне