холекальциферол или альфакальцидол что лучше
Применение альфакальцидола в лечении остеопороза
Альфакальцидол эффективно повышает минеральную плотность кости, улучшает качество костной ткани, улучшает нервно-мышечную проводимость, координацию движений, что снижает тенденцию к падениям, а значит, и риск переломов.
Alfacalcidol efficiently increases mineral density of bones, improves quality of osseous tissue, improves neuromuscular conductivity, coordination of movements, which reduces the tendency of falling, and, as a result, the risk of fractures.
Остеопороз (ОП) — системное заболевание скелета из группы метаболических остеопатий — характеризуется уменьшением костной массы и нарушением микроархитектоники костной ткани, что приводит к снижению прочности кости и, как следствие, к повышению риска возникновения переломов [1]. Целью лекарственной терапии ОП является снижение частоты и риска переломов, увеличение минеральной плотности кости (МПК) и улучшение качества жизни пациентов [1].
Среди лекарственных средств, применяемых для лечения и профилактики системного ОП, важное место занимают антирезорбтивные средства, к которым относятся витамин D и его активные метаболиты — альфакальцидол и кальцитриол [2, 3]. Постменопаузальный ОП характеризуется усилением пери- и постменопаузальных костных потерь, которые могут происходить при нормальной или исходно низкой пиковой массе костной ткани. Ведущим патогенетическим механизмом ОП является дефицит эстрогенов и связанное с этим снижение активности почечного фермента 1α-гидроксилазы, сопровождающееся уменьшением синтеза кальцитриола в почках [4]. Это приводит к вымыванию кальция (Ca) из костной ткани, сопутствующей супрессии паратиреоидного гормона (ПТГ), мальабсорбции Са, дефициту рецепторов витамина D (VDR), прежде всего в классических тканях-мишенях (кишечнике, костях, почках и паращитовидных железах). Принципиально, что при постменопаузальном ОП снижение активности кальцитриола всегда вторично по отношению к эстрогенной недостаточности [5, 6]. Скорость костеобразования при этом типе ОП, как правило, остается в пределах нормы либо незначительно снижена [7–11].
Основным механизмом развития сенильного (инволютивного) ОП является снижение синтеза кальцитриола в результате дефицита почечной 1α-гидроксилазы, а также дефицит и снижение аффинности рецепторов к кальцитриолу в органах-мишенях: желудочно-кишечном тракте (ЖКТ), костях и паращитовидных железах. Усиление мальабсорбции Са и, соответственно, вымывание его из кости, а также снижение экспрессии генов, ответственных за синтез матриксных белков, продуцируемых остеобластами, в конечном итоге оказывает отрицательное влияние на массу и качество костной ткани [6, 7, 12, 13].
Дефицит половых гормонов (эстрогенов/тестостерона), а также соматопауза, сопровождающаяся снижением инсулиноподобных факторов роста (ИПФР, IGF) и их связывающих белков (IGFBP-4↑, IGFBP-3/5↓), при сенильном ОП оказывают дополнительное влияние на уменьшение кофакторов 1α-гидроксилазы [14–16].
В итоге снижение синтеза, рецепции и активности D-гормона стимулирует синтез ПТГ с развитием гиперплазии паращитовидных желез и третичного гиперпаратиреоза [15, 17]. При этом повышение уровня ПТГ у пациентов старше 70 лет с остеопорозом сопровождается увеличением эндокортикальной резорбции, особенно в области проксимального отдела бедренной кости, внутрикортикальной пористости, и лежит в основе склонности пациентов к переломам. Причем индуцируемая посредством ПТГ костная резорбция не сопровождается адекватным повышением костеобразования [9, 18–20].
Таким образом, восстановление уровня кальцитриола — ключевое направление профилактики и лечения при ОП, обусловливает обязательное применение витамина D или его активных форм (кальцитриола и альфакальцидола).
И обычный витамин D3, и пролекарство D-гормона — альфакальцидол (1α,25(ОН)D3) действуют через общий биологически активный метаболит — кальцитриол (1α,25(ОН)2D3; D-гормон). Причем в организме альфакальцидол (Альфа Д3-Тева®) превращается в кальцитриол в обход эндогенной регуляции и без участия почечного фермента 1α-гидроксилазы [21].
Как уже отмечалось, действие альфакальцидола (через активный метаболит кальцитриол) в поддержании кальциевого и костного гомеостаза осуществляется через взаимодействие с ядерным VDR в органах-мишенях, прежде всего кишечнике, костях, почках и паращитовидных железах [14, 22, 23]. Считается, что в условиях дефицита витамина D3 основными эффектами физиологических и фармакологических концентраций кальцитриола (1α,25(OH)2D3) являются:
Данные об эффектах кальцитриола, полученные в ходе рандомизированных проспективных клинических исследований, существенно разнятся. В одних исследованиях показано существенное влияние кальцитриола (1α,25(ОН)2D3) на прирост МПК при постменопаузальном остеопорозе [21, 23, 26], в других — подобные эффекты не получены [27], что, возможно, связано с использованием более низких доз препарата. Наряду с этим 3-летнее проспективное многоцентровое исследование с участием 622 женщин с компрессионными переломами позвонков обнаружило, что лечение кальцитриолом (1α,25(ОН)2D3) приводит к снижению частоты новых вертебральных переломов [28].
Особенностью препаратов витамина D является их хорошая переносимость. Прием добавок обычного витамина D и Са пожилыми пациентами, с недостаточностью природного витамина D и сопутствующими низкими уровнями субстрата 25OHD3, в большинстве случаев достаточен, чтобы преодолеть клиническую или даже субклиническую остеомаляцию. По данным некоторых исследований, у пациентов с дефицитом природного витамина D и низким потреблением Са добавки витамина уменьшают выраженность остеопороза и частоту невертебральных переломов [17, 29]. Между тем применение обычного витамина D в физиологических суточных дозах 400–3000 МЕ (или 15 мкг 25OHD3) не всегда эффективно при терапии остеопороза [21, 30]. Более того, у лиц пожилого возраста коррекция нарушений синтеза, рецепции и активности кальцитриола требует назначения витамина D в дозах, существенно превышающих не только физиологические, но и фармакологические, что может привести к интоксикации витамином D вследствие его длительной задержки в мягких тканях.
В исследовании с применением предшественника D-гормона — альфакальцидола, по сравнению с нативным витамином D3 в сочетании с препаратами Са, выявлено увеличение МПК и уменьшение частоты переломов позвонков [21, 24, 31].
Костные эффекты и безопасность применения 1 мкг/сут альфакальцидола (Альфа Д3-Тева®) и комбинации витамина D 880 МЕ/сут и Са карбоната 1000 мг/сут, в терапии пациенток белой расы с постменопаузальным ОП и отсутствием дефицита витамина D в плазме крови, оценены в многоцентровом рандомизированном сравнительном исследовании. Через 12 месяцев от начала лечения в группе пациенток, принимавших альфакальцидол, произошло увеличение МПК поясничного отдела позвоночника (от исходного уровня) на 2,33%, а через 18 месяцев — на 2,87% (р TRANCE) в стромальных клетках костного мозга), на фоне приема больших доз 1α,25(ОН)2D3 противоречит данным, полученным in vivo, свидетельствующим, что в дозах, не приводящих к развитию гиперкальциемии, активный метаболит витамина D3 повышает костную массу, как минимум, за счет подавления костной резорбции [14. 15, 36–38]. Принимая во внимание, что протективные эффекты альфакальцидола на кость наблюдаются при постоянных уровнях ПТГ, разумно допустить, что активный метаболит витамина D3 ингибирует костную резорбцию независимо от супрессии ПТГ. Безусловно, необходимы дальнейшие исследования, которые прольют свет на механизмы, с помощью которых активный метаболит витамина D3 тормозит резорбцию костей [34, 35].
Еще одним органом-мишенью для эффектов кальцитриола [14–17] является мышечная система. Активация альфакальцидолом VDR на мембране мышечных клеток, где они регулируют транспорт кальция и фосфата, а также в ядре клеток, где они участвуют в производстве энергии для сокращения мышцы, вносит свой «вклад» в улучшение двигательной активности, оптимизацию координации движений и, как следствие, предупреждение риска падений у пожилых пациентов. Кроме того, альфакальцидол регулирует экспрессию фактора роста нервов (ФРН), а также способствует дозозависимому увеличению эффекта ИПФР-1, одного из наиболее значимых факторов активации мышц [15, 27]. Очевидно, что некоторые патогенетические факторы возрастной саркопении могут быть уравновешены терапией альфакальцидолом.
Получены клинические данные об эффективности альфакальцидола в аспекте увеличения мышечной силы [24] и снижения частоты переломов позвонков и шейки бедра на 50–70%, уменьшения интенсивности боли в спине по сравнению с нативным витамином D [33].
Оценка относительного риска падений у женщин в постменопаузе, получавших витамин D, показала незначительный положительный эффект холекальциферола на снижение риска падений 0,92 (95% ДИ 0,75–1,12). Между тем различий с теми пациентами, которые не получали добавку витамина D, получено не было. Рандомизированное, плацебо-контролируемое клиническое исследование, включившее 9440 проживающих дома пожилых женщин и мужчин в возрасте старше 75 лет, показало, что ежегодное внутримышечное введение 300 000 МЕ витамина D в течение 3 лет не в состоянии уменьшить падения и, соответственно, риск переломов бедра и непозвоночных переломов. Ежедневный пероральный прием нативного витамина D (800 МЕ) и/или кальция (1 г) в группе из 5292 женщин (85%) и мужчин в возрасте 70 лет и старше с установленным ОП и последующим наблюдением в течение 24 и 62 месяцев также не подтвердил снижения риска падений и переломов позвонков и шейки бедра [9, 22, 29, 39, 40, 41].
Наряду с этим, сравнительный метаанализ эффективности двух режимов терапии — альфакальцидолом и нативным витамином D (14 исследований с общим количеством пациентов 21 268) показал статистически значимое снижение абсолютного риска падений в 3,5 раза на терапии активными метаболитами по сравнению с препаратами витамина D 0,79 (95% ДИ 0,64–0,96) против 0,94 (95% ДИ 0,87–1,01) (р = 0,049). Причем число больных, которых необходимо было пролечить, чтобы предупредить 1 падение, для альфакальцидола составило 12, а для витамина D — 52 [41].
Таким образом, альфакальцидол (Альфа Д3-Тева®) не только эффективно повышает МПК, улучшает качество костной ткани, но и улучшает нервно-мышечную проводимость и сократимость двигательных мышц, а также координацию движений, что в итоге снижает тенденцию к падениям, а значит, и риск переломов.
Литература
ГБОУ ВПО ОмГМА МЗ РФ, Омск
Холекальциферол или альфакальцидол что лучше
Что такое Витамин D?
Какое отношение Витамин D имеет к заболеваниям суставов?
Витамин D принимает активное участие в формировании и поддержании количества и качества костной ткани.
История.
С момента открытия в 1913г. интерес к этому витамину менялся от обычного витамина до гормона с учетом суперсовременных взглядов на обменные процессы в организме и формирования заболеваний.
В 1928г. А.Windaus присуждена Нобелевская премия за выделение витамина D и установление строения растительных стероидов.
Более 100 лет продолжается изучение витамина D, и никто не может сказать, что все о нём знает.
Профессор М. Холик, всемирный авторитет и эксперт в проблеме дефицита витамина D, указывает, что до 80 % человечества страдает от дефицита витамина D. Уровень дефицита значительно ниже критического, все ходят под угрозой!
Теория.
Какой бывает Витамин D?
Витамин D представлен основными природными формами:
— D2 (эргокальциферол), содержится в пищевых продуктах, поступает до 20% от потребности;
— D3 (холекальциферол) образуется в организме из находящегося в коже предшественника.
(7-дегидрохолестерин) под влиянием ультрафиолетового облучения солнечного света. Это преобразование происходит кратковременнои непостоянно.
Витамин D (D2 (эргокальциферол), поступающий с пищей и D3 (холекальциферол), преобразующийся в коже) в результате реакции 25- гидроксилирования в печени, превращается в 25 (ОН) D, что весьма быстро ведет к его повышению в сыворотке крови. Уровень этого вещества отражает как образование витамина D в коже, так и поступление с пищей и используется, как маркер статуса витамина D (транспортная форма, не оказывает никакого действия). В организме человека основная часть 25(ОН)D гидроксилируется в канальцах коры почек, незначительно в клетках крови и костной ткани, превращаясь в 1α25-дигидрокисвитамин D3 (активный метаболит — кальцитриол). Частично транспортная форма 25(ОН)D поступает в жировую и мышечную ткани составляя депо.
Более 99% образовавшегося активного метаболита витамина D3 поступает в кровь, где связывается с транспортным белком и поступает в органы-мишени и взаимодействует со специфическими рецепторами витамина D (VDR).
Специфические рецепторы витамина D (VDR) представлены в 37 органах и тканях, причём не только в классических органах-мишенях для витамина D — в кишечнике, почках, костях, но и в мозге, сердце, поджелудочной, паращитовидных и предстательной железах, органах выделительной и репродуктивной системы, иммунной, мышечно-скелетной, дыхательной, эндокринной систем, соединительной ткани и др.
Витамин D связывается со специфическим рецептором витамина D (VDR), который регулирует экспрессию многих генов, включая гены ионного канала TRPV6 (обеспечивает абсорбцию кальция в кишечнике), CALB1 (кальбиндин; обеспечивает транспорт кальция в кровеносное русло), BGLAP (остеокальцин; обеспечивает минерализацию костной ткани и гомеостаз кальция), SPP1 (остеопонтин; регулирует миграцию остеокластов), REN (ренин; обеспечивает регуляцию АД, являясь ключевым элементом РААС), IGFBP (связывающий белок инсулиноподобного фактора роста; усиливает действие инсулиноподобного фактора роста), FGF23 и FGFR23 (фактор роста фибробластов 23; регулируют уровни кальция, фосфат-аниона, процессы клеточного деления фибробластов), TGFB1 (трансформирующий фактор роста бета-1; регулирует процессы клеточного деления и дифференцировки остеоцитов, хондроцитов, фибробластов и кератиноцитов), LRP2 (ЛПНП-рецептор-связанный белок 2; является посредником эндоцитоза липопротеинов низкой плотности), INSR (рецептор инсулина; обеспечивает эффекты инсулина на любые типы клеток).
Негеномное воздействие активный метаболит витамин D оказывает через мембранные рецепторы клеток, вызывая быстрые, в течение минуты, физиологические и биохимические реакции, активируя канальцевые каналы, регулируя ионные токи, стимулируя транспорт ионов Са+, сокращение мышц и др.
Переходим от теории к практике!
В нашем центре было проведено обследование 277 человек с диагнозом асептический некроз головки бедренной кости (154 женщины и 123 мужчины) на предмет определения показателей метаболита витамина группы D (25(ОН)D.
Данные просто ужасающие…. 😲😲😲
Из всей выборки по пациентам — 69% пациентов (68% женщин и 71% мужчин) имеют недостаточность и дефицит витамина D.
Также, совместно с сетью диагностических лабораторий Гемотест в нашем Центре провели анализ обеспеченности витамином D населения России с 2017г.
Было проведено 289697 исследований, которые показали, что только треть населения (33,10%) имеет достаточный уровень витамина D (больше 30 нг\мл). В основном это люди старше 45 лет (35% среди мужчин и 38% среди женщин).
На втором месте возрастная группа в диапазоне 35-45 лет среди мужчин (20,48%) и 25-34 лет среди женщин (26,87%).
Низкий уровень витамина D разной степени: от недостаточности до выраженного дефицита чаще встречается в возрасте 25-34 лет и старше 45 лет (от 22 до 40%) среди мужчин и женщин.
И получается, что самые энергичные молодые люди, которые активно занимаются различными видами спорта стоят на втором месте по риску развития костной патологии после пожилых людей.
При региональном анализе самым обеспокоенным в плане распространения дефицита витамина D, помимо Москвы (94585 исследований) и Санкт-Петербурга(10896 исследований), оказался Краснодарский край, где было проведено 8968 исследований и выявлено 61 % населения с недостатком витамина D, несмотря на обилие солнечных дней.
Поэтому ни один способ лечения (ни операция, ни безоперационный метод), применяемый при диагнозе асептический некроз ГБК, коксартроз, остеопороз не может быть успешным без коррекции значения витамина D.
Именно поэтому в комплексном безоперационном методе лечения асептического некроза суставов, коксартрозах, остеопорозе коррекция витамина D является краеугольным камнем. Без определения первичных показателей и отслеживания их в динамике — это всё равно, что гадать на кофейной гуще.
В аптеках при выборе препарата витамина D разбегаются глаза: тут тебе и капли, и капсулы, и водный, и масляный раствор, есть еще инъекционные формы и мази.
Растворы для внутримышечного введения содержат дозы холекальциферола от 100000 до 300000МЕ в 1 мл и могут применяться как инъекционно, так и внутрь. Используются в практике реже, чем чисто пероральные препараты в случаях с нарушением всасывания в кишечнике, при гипокальциемической тетании или когда хочется «экзотических» лекарств.
С витамином D в виде мазей или кремов больше знакомы пациенты, страдающие псориазом. Здесь предлагается ряд средств, которые в составе зачастую содержат гормоны и подбираются дерматологом после обследования.
Витамин D для внутреннего приема представлен масляными и водными растворами, хотя сам витамин D относится к жирорастворимым витаминам(как витамины К, А и Е). В водных растворах препарат находится в мицеллярной форме и всасывается легче, чем масляная форма. После приема холекальциферол всасывается в тонком кишечнике, метаболизируется в печени и почках. Препарат проникает через плацентарный барьер и в молоко матери. Выводится в основном с желчью, в небольшом количестве через почки.
В отличие от холекальциферола альфакальцидол (оксидевит) не метаболизируется в почках, а преобразуется в печени до активного метаболита кальцитриола и может использоваться при почечной недостаточности.
Витамин D обладает свойством к накоплению поэтому у своим пациентов мы контролируем уровень метаболитов витамин D в крови каждые 3-6 месяцев для своевременно коррекции дозы.
Поскольку в исследованиях по витамину D не выявлены какие-либо значимые гендерные различия его метаболизма и действия, рекомендации по дозам и способам дозирования у обоих полов не отличаются.
На упаковках препаратов указывается содержание витамина Д в МЕ(международных единицах или UI) или микрограммах. Перерасчет дозы колекальциферола: 1 мкг = 40 МЕ.
В клинической практике используются нативные препараты витамина D и метаболиты витамина D. Нативный витамин D представлен препаратами на масляной основе (Вигантол, Детримакс) и на водной основе (Аквадтерим). Эти препараты являются синтетическими аналогами витамина D3 (холекальциферол). Препараты метаболитов витамина D представлены альфакальцидолом (Оксидевит, Альфа Д3-Тева и кальцитриолом — Рокальтрол). Нативный витамин D используют преимущественно при дефиците витамина D вследствие недостаточной инсоляции и поступления с пищей.
Сейчас во врачебной среде только «ленивый» не назначает преимущественно большие дозы холекальциферола, в лучшем случае, ориентируясь на транспортные формы витамина D 25(ОН)D3 — это ОПАСНО! 😨 😨 😳 😳 😡 😡
Применение холекальциферола обосновано у молодых и здоровых пациентов, не требующих систематического контроля при приеме физиологических доз.
Метаболиты витамина D направлены на ликвидацию в организме дефицита D-гормона (кальцитриола) и преодоление тканевой резистентности к кальцитриолу, обусловленное врожденной (генетически обусловленной) и возрастоассоциированным снижением числа рецепторов витамина D в тканях-мишенях: кишечнике, почках, костной ткани, скелетных мышцах. Кальцитриол (гормон), после приема внутрь быстро всасывается в тонком кишечнике. Максимальная концентрация в сыворотке крови отмечается через 2-6 часов и вызывает повышение кишечной абсорбции кальция. Период полувыведения составляет 3-6 часов. При курсовом лечение равновесная концентрация достигается через 7 суток. Для поддержания стабильной терапевтической концентрации препарат принимается до 3х раз в сутки.
Альфакальцидол (Оксидевит) метаболизируется в печени и превращается в активную форму, действует более длительно, оказывая выраженное влияние на костную ткань. Принимается в дозе 0,5-1,0 мкг 1 раз в день.
В нашем Медицинском центре применению препаратов витамина D и его метаболитов уделяется приоритетное внимание.
С учетом генетического тестирования рецепторов витамина D доза лекарственных средств подбирается индивидуально с лабораторными и инструментальным контролем результата лечения.
Лабораторная диагностика.
В условиях поликлиник и сетевых лабораторий в настоящее время доступно исследование витамина D различных форм (D2, D3, суммарный витамин D 25(ОН), активные метаболиты витамина Д), но существует значительная вариабельность, как между различными методами, так и лабораториями, использующими одинаковые методы. В 1995г создали международную программу стандартизации D E Q A S (Vitamin D External Quality Assessment Scheme), целью которой является разработка и контроль выполнения методических рекомендации лабораторного определения витамина D и его метаболитов.
В основном витамин D определяется иммунохемилюминесцентным анализом (разновидность иммуноферментного анализа-ИФА, основанный на реакции «антиген-антитело»). В ходе цепи из трех последовательных реакций связываются все витамеры витамина Д (и все что окажется «похожим» на них), что приводит к завышению его реального содержания.
Чтобы разложить содержание витамина D по полочкам используют жидкостную хроматографию с масс-спектрометрией. Проходя через хроматограф, проба разделяется на компоненты, а масс-спектрометр отвечает за их идентификацию и анализ. На выходе получаем количественные показатели фракций витамина D.
Поэтому при определении уровней 25(OH)D в динамике рекомендуется использование одного и того же метода и лаборатории.
Для определения актуального значения витамина D мы рекомендуем проводить исследование в Лаборатории Гемотест следующего показателя: Метаболиты витамина группы D (1,25-ОН витамин D3 и 25-ОН витамин D3, раздельный результат). п.1.61.1
При сдаче анализа «Метаболиты витамина группы D Вы можете воспользоваться сертификатом на проведение бесплатного исследование ДПИД (дезоксипиридинолин) в моче. п.12.12 (Маркер разрушения кости).
ТОП препаратов кальция
Кальций является одним из электролитов в организме. Это минерал, который несет электрический заряд при растворении в крови. Роль кальция в организме сложно переоценить, т. к. он является строительным материалом для костных структур, поддерживает здоровье клеточных мембран и принимает участие в передаче нервных импульсов. Также кальций обладает детоксикационным, противовоспалительным и противоаллергенным действием.
Лучшие препараты кальция представлены в рейтинге ниже. ТОП составлен в зависимости от эффективности и безопасности лекарственных средств, а также на основе отзывов. Не менее важный критерий – соответствие цена-качество. Самостоятельно подобрать лекарство непросто. Для начала следует проконсультироваться с врачом и при необходимости пройти обследование, чтобы уточнить диагноз.
Классификация препаратов кальция
Дефицит кальция часто развивается ползуче, а затем долго остается незамеченным. Это состояние может оказать негативное влияние на здоровье костей. Таким образом, увеличивается риск развития остеопороза и переломов костей.
Эксперты рекомендуют принимать добавки кальция только при доказанном дефиците данного минерала и витамина D или, а также при существующем остеопорозе. Главное – правильно подобрать препарат и дозировку.
Причины дефицита кальция в организме
Чтобы правильно выполнять свои разнообразные задачи, кальций должен присутствовать в организме в достаточном количестве. Но что такое достаточное количество? Суточные потребности разнятся в зависимости возрастных групп. В отличие от многих других питательных веществ, потребность в кальции не зависит от половой принадлежности. Мужчины и женщины нуждаются в минерале в одинаковой степени.
Таблица – Суточная потребность в кальции в зависимости от возраста
Костные эффекты альфакальцидола и нативного витамина D в терапии остеопороза
Рассмотрен подход к лечению остеопороза, эффективно повышающий минеральную плотность костной ткани, улучшающий качество костной ткани и нервно-мышечную проводимость и сократимость двигательных мышц, а также координацию движений, что в итоге снижает риск р
We considered approach to osteoporosis treatment which effectively increases bone mineral density, enhances quality of osseous tissue and nervous-muscular conductivity and motor muscle contractility, as well as movement coordination, which, as a result, reduces risk of falling and fractures.
Повышенный интерес к молекулярной биологии и физиологии витамина D в настоящее время обусловлен появлением новых знаний о его ключевой роли как контролера гомеостаза кальция (Са 2+ ) и уровня паратиреоидного гормона (ПТГ), а также о плейотропных эффектах, связанных с интракринными и паракринными действиями его метаболитов [1].
Термин «витамин D» объединяет группу тесно взаимосвязанных гормональных соединений, обуславливающих уникальность его эффектов: витамин D1 (вещество, выделенное из жира печени трески и представляющее собой соединение эргокальциферола и люмистерола в соотношении 1:1); витамин D2 (эргокальциферол, образующийся из эргостерола под действием солнечного света, главным образом, в растениях и грибах); витамин D3 (холекальциферол, образующийся в организме животных и человека под действием солнечного света из 7-дегидрохолестерина); витамин D4 (дигидротахистерол); витамин D5 (ситокальциферол). В качестве «истинного» витамина D рассматривается именно D3, в то время как другие представители этой группы считаются модифицированными производными витамина D [2]. Примечательно, что сам по себе витамин D3 не отличается какой-либо биологической активностью, однако он интересен последовательным двухступенчатым метаболизмом, в результате которого преобразуется в биологически активную гормональную форму, именуемую D-гормоном или кальцитриолом, оказывающую массу биологических эффектов посредством взаимодействия со специфическими рецепторами, локализованными в ядрах клеток и на плазматических клеточных мембранах (РВD). Весь кластер метаболитов витамина D в совокупности со специфическими тканевыми ядерными рецепторами к D-гормону объединяют в эндокринную систему витамина D. Основное функциональное назначение этой системы заключается в реализации биологических эффектов в тканях-мишенях за счет регуляции транскрипции РВD генов (геномный механизм) и скорых негеномных реакций РВD на поверхности цитоплазматических клеточных мембран [3].
Последовательные этапы метаболизма витамина D из биологически неактивного вещества до D-гормона четко представлены в генезе отдельных форм остеопороза (ОП).
Основная часть витамина D синтезируется в коже человека после фотоизомеризации, определяемой действием УФ-излучения спектра В (длина волны 280–315 нм) в виде 7-дегидрохолестерола — «провитамина D3». Соответственно, в качестве основных факторов, оказывающих влияние на этот процесс, могут выступать либо факторы окружающей среды (широта, сезон, время суток, содержание озона и облаков), либо персональные факторы (тип и цвет кожи, возраст, характер одежды, использование солнцезащитных кремов, генетика). Значимо меньшая (не более 10%) часть витамина D3 поступает с пищей.
Из кожи провитамин D3 попадает в общий кровоток и, затем, метаболизируется (90%) в печени до 25-гидроксивитамина D3 (25(ОН)D). На этом этапе реакция гидроксилирования витамина D3 в печени представляет собой полностью субстрат-зависимый процесс, который протекает чрезвычайно быстро и ведет к повышению 25(ОН)D в сыворотке крови. В клинической практике именно уровень 25(ОН)D вполне может использоваться как маркер статуса витамина D, поскольку его концентрация в сыворотке является отражением адекватности механизмов образования провитамина D в коже или достаточности поступления витамина D3 с пищей. Некоторое количество 25(ОН)D депонируется в жировые и мышечные клетки с неясным сроком существования в них.
Несмотря на то, что 25(ОН)D метаболически инертен, ценность его заключается в том, что это вещество является непосредственным предшественником следующего метаболита — активной формы витамина D3 — 1α,25-дигидроксивитамина D3 (1α,25(ОН)2D3 или кальцитриола, или D-гормона), — продукта повторной реакции 1 α-гидроксилирования, которое протекает при участии ключевого фермента 1α-гидроксилазы (митохондриальной CYP27B1-гидроксилазы), в эпителиальных клетках проксимальных почечных канальцев и иных экстраренальных тканях, также содержащих как 25(ОН)D, так и 1α-гидроксилазу [4–6]. При этом образование в почках 1α,25(OH)2D3 строго контролируется ПТГ, на концентрацию которого, в свою очередь, влияет как уровень самого активного метаболита витамина 1α,25(OH)2D3, так и плазменный уровень кальция и фосфора. Наряду с этим активно в процессах стимуляции синтеза 1α-гидроксилазы и 1α-гидроксилирования участвуют половые гормоны (эстрогены, андрогены), кальцитонин, пролактин, гормон роста. Продуцируемый остеоцитами фактор роста фибробластов 23(FGF23), напротив, тормозит 1a-гидроксилирование в клетках почек и толстого кишечника.
D-эндокринная система, поэтапно реализующая геномные и негеномные эффекты, обеспечивает результативность реакций по оси «витамин D — ПТГ — Са 2+ » в виде основного контролера кальций-фосфорного обмена. Однако, наряду с этим, она является непосредственным участником процессов, обеспечивающих поддержание оптимальной минеральной плотности костной ткани (МПК), обмена липидов, регуляции уровня артериального давления, стимуляции дифференцировки клеток, ингибирования клеточной пролиферации, реализации самых разнообразных иммунологических реакций [7, 8]. Таким образом, активными компонентами D-эндокринной системы являются лишь сам D-гормон и гидроксилирующие его ферменты. Соответственно, все биологические реакции, приписываемые витамину D, по факту осуществляются его активным метаболитом — D-гормоном [2]. Примечательно, что активная форма витамина D — 1α,25(OH)2D3 не может рассматриваться в качестве маркера запасов витамина D в организме, поскольку быстро связывается со специфическими PBD и активно участвует в самых разнообразных реакциях в качестве D-гормона.
Исходя из представлений о метаболизме витамина D, становится очевидным, что концентрация витамина D далеко не всегда сопоставима с концентрацией D-гормона. Данный вывод подтверждают и исследования, выполненные среди пациентов с ОП [9]. В частности, в когорте пожилых пациентов с ОП доля лиц с дефицитом D-гормона, но нормальным уровнем 25(ОН)D3, составила соответственно 89,1% среди мужчин и 96,6% среди женщин [10]. В отдельных когортах обнаруживается ряд предпосылок к формированию дефицита D-гормона без предшествующего снижения уровня витамина D. Нарушение, например, превращения нативного витамина D в D-гормон при тяжелых заболеваниях почек [11], сахарном диабете с прогрессирующей диабетической нефропатией [8]. Депонирование 25(ОН)D3 в жировой ткани с формированием относительного дефицита циркулирующего D-гормона у лиц с ожирением [12, 13]. Снижение экспрессии рецептора к D-гормону у людей пожилого возраста [14].
Хотя, конечно, значительная доля (40–100%) лиц старше 65 лет все-таки имеют дефицит витамина D. В зоне недостаточности витамина D находятся более 60% постменопаузальных женщин [9, 14]. Развитию дефицита способствуют возрастные изменения характера питания с преобладанием низкокалорийной пищи и исключением из рациона жиров животного происхождения, связанного с профилактикой атеросклероза; низкое содержание витамина D в продуктах питания; нарушение всывания витамина D в кишечнике. Усугубляют дефицит витамина D недостаточное пребывание на солнце, ношение закрывающей тело одежды, использование солнцезащитных кремов. Безусловно, возрастные изменения затрагивают кожу. Известно, что у людей в возрасте старше 65 лет наблюдается 4-кратное снижение способности синтеза 7-дегидрохолестерола.
Сенильный (инволютивный) ОП также характеризуется снижением синтеза кальцитриола, но как следствие дефицита почечной и тканевой 1α-гидроксилазы, а также снижения аффинности рецепторов к кальцитриолу в органах-мишенях [16–20]. Усиление мальабсорбции Са 2+ и, соответственно, вымывание его из кости, а также снижение экспрессии генов, ответственных за синтез матриксных белков, продуцируемых остеобластами, в конечном итоге оказывают отрицательное влияние на массу и качество костной ткани.
Соматопауза, сопровождающаяся снижением синтеза инсулиноподобных факторов роста (ИФРs) и их связывающих белков (ИФРBP-4↑, ИФРBP-3/5↓), при сенильном ОП оказывает дополнительное влияние на уменьшение кофакторов 1α-гидроксилазы. В результате снижения синтеза, рецепции и активности D-гормона стимулируется синтез ПТГ [17–21], регулярное повышение уровня которого у пациентов старше 70 лет с остеопорозом сопровождается увеличением эндокортикальной резорбции в области проксимального отдела бедренной кости, внутрикортикальной пористости и лежит в основе склонности пациентов к переломам. Причем индуцируемая посредством ПТГ костная резорбция не сопровождается адекватным повышением костеобразования.
Очевидно, что ключевым элементом патогенеза различных форм ОП является снижение активности 1α-гидроксилазы и нарушение образования D-гормона из витамина D. В этой связи, восстановление уровня кальцитриола — ключевое направление профилактики и лечения ОП, предусматривающее обязательное применение витамина D или его активных форм (кальцитриола и альфакальцидола).
И нативный витамин D3, и пролекарство D-гормона — альфакальцидол (1α,25(ОН)D3) действуют через общий биологически активный метаболит — кальцитриол (1α,25(ОН)2D3; D-гормон). Причем в организме альфакальцидол (Альфа Д3-Тева®) превращается в кальцитриол в обход эндогенной регуляции и без участия почечного фермента 1α-гидроксилазы.
Как уже отмечалось, действие альфакальцидола (через активный метаболит кальцитриол) в поддержании кальциевого и костного гомеостаза осуществляется через взаимодействие с ядерным PBD в органах-мишенях, прежде всего в кишечнике, костях, почках и паращитовидных железах [10]. Основными эффектами физиологических и фармакологических концентраций кальцитриола (1α,25(OH)2D3) являются: повышение уровня Са 2+ в плазме крови за счет стимуляции его абсорбции в кишечнике и реабсорбции в дистальных почечных канальцах; снижение содержания ПТГ в плазме крови за счет прямого ингибирования генной транскрипции ПТГ и связывания с PBD паращитовидных желез [10, 22]; уменьшение резорбции и увеличение образования костной ткани за счет снижения содержания ПТГ и влияния на кальциевый и фосфатный гомеостаз [22].
Несомненным достоинством препаратов витамина D является их хорошая переносимость. Прием добавок нативного витамина D пациентами с недостаточностью витамина D и сопутствующими низкими уровнями субстрата 25(OH)D в большинстве случаев может оказаться достаточным. По данным некоторых исследований, у пациентов с дефицитом природного витамина D и низким потреблением Са 2+ добавки витамина уменьшают выраженность ОП и частоту невертебральных переломов [22, 23]. Между тем применение нативного витамина D у лиц пожилого возраста может оказаться неэффективным вследствие нарушения метаболизации до D-гормона в почках и снижения чувствительности рецепторов кишечника к D-гормону.
В исследованиях с применением предшественника D-гормона — альфакальцидола, по сравнению с природным витамином D3, выявлено увеличение минеральной плотности костной ткани (МПК) и уменьшение частоты переломов позвонков [3, 14, 24–26].
Таким образом, основные костные эффекты витамина D реализуются за счет действия D-гормона, а не его промежуточного метаболита 25(ОН)D3. Поэтому, назначая нативный витамин D, крайне важно быть уверенным в том, что его метаболизация пройдет без «потерь», а пациент в итоге получит именно то количество D-гормона, которое обеспечит надежную терапию ОП [28].
Помимо этого, к настоящему времени накоплены данные, которые могут быть использованы в качестве обоснования дополнительных преимуществ применения при ОП альфакальцидола перед нативным витамином D, в контексте костных эффектов, но при этом не связанных только лишь со стимулированной абсорбцией Са 2+ и сниженным содержанием эндогенного ПТГ как единственно необходимого условия анаболического действия этих препаратов. По крайней мере, в экспериментальной модели ОП, вызванного дефицитом эстрогенов вследствие овариоэктомии у крыс, была установлена взаимосвязь между способностью альфакальцидола и витамина D3 повышать содержание Са 2+ и оказывать протективное влияние на кости. В данном исследовании оба препарата увеличивали МПК. Причем прирост МПК сопровождался небольшим (в пределах нормального диапазона) увеличением содержания Са 2+ в плазме крови и напрямую зависел от дозы препаратов. Однако при фиксированной концентрации Са 2+ в плазме крови альфакальцидол более эффективно увеличивал МПК по сравнению с витамином D3, а для того чтобы достичь сопоставимого уровня МПК, требовались более высокие дозы витамина D3 [31]. Близкие результаты получены в части увеличения прочности костей на фоне приема обоих препаратов. Разумеется, эффект зависел от темпов роста концентрации Са 2+ в крови. Однако при одном и том же уровне Са 2+ в плазме альфакальцидол был более эффективен, чем витамин D3, в отношении увеличения прочности костей, сниженной при дефиците эстрогенов. Причем на этой животной модели показано, что влияние витамина D3 на прочность кости достигало плато при дозе 200 мкг/кг, а доза 400 мкг/кг вообще не приводила к соответствующему увеличению МПК [31].
В этом же исследовании были сопоставлены эффекты препаратов на экскрецию Са 2+ с мочой. Также были обнаружены однонаправленные тенденции: при одном и том же уровне Са 2+ в моче альфакальцидол показывал большую эффективность, чем витамин D3 в отношении увеличения массы и прочности костей, сниженных при дефиците эстрогенов.
Сравнение костных эффектов альфакальцидола и витамина D3 при четко заданной концентрации Са 2+ в плазме крови у крыс — менее 10 мг/дл (то есть при таких дозировках, которые не вызывают гиперкальциемии) показало, что прочность костной ткани увеличивается на альфакальцидоле, но не меняется на витамине D3. Очевидно, чтобы вызвать сопоставимый с альфакальцидолом прирост МПК могут потребоваться большие дозы витамина D3, а это уже чревато развитием гиперкальциемии. Кроме того, и альфакальцидол, и витамин D3 дозозависимо снижали содержание дезоксипиридинолина (маркера костной резорбции) в моче, однако альфакальцидол ингибировал резорбцию костей более эффективно, чем витамин D. Сопоставление этих же эффектов препаратов, но при заданном низком содержании Са 2+ в плазме, показало, что назначение альфакальцидола приводит к снижению экскреции дезоксипиридинолина с мочой, в то время как назначение витамина D3 в дозах, поддерживающих концентрацию Са 2+ в плазме крови ниже 10 мг/дл, не сопровождается достоверным подавлением экскреции дезоксипиридинолина [31].
Безусловно, механизмы протективного эффекта альфакальцидола на кости остаются не до конца изученными, тем не менее, накапливаются убедительные доказательства подавления им костной резорбции, обусловленной дефицитом эстрогенов. Не исключено, что супрессия эндогенного ПТГ также не является единственно необходимым условием развития костных эффектов препарата. Подтверждением этому служат результаты исследования, в котором оценка влияния альфакальцидола на кости и кальциевый обмен проводилась в эксперименте, на животных, перенесших паратиреоидэктомию [31]. Послеоперационная гипокальциемия и гиперфосфтемия у них нивелировались непрерывной инфузией человеческого паратиреоидного гормона (чПТГ) (1–34 — аминокислотные последовательности, ответственные за кальциемические эффекты ПТГ). Таким образом, на фоне фиксированного уровня ПТГ и относительной нормокальциемии, доза альфакальцидола титровалась в сторону увеличения, но, и это было главным условием, не сопровождалась развитием гиперкальциемии. Далее, по окончании исследования, животных умерщвляли, а кости подвергали изучению. Исследование показало, что в течение 2-недельного периода альфакальцидол дозозависимо увеличивал МПК проксимальных отделов большеберцовой кости, объем трабекулярной кости. Поверхность кости у животных, получавших альфакальцидол, была выстлана большими кубовидными клетками, напоминающими активные остеобласты [21]. Основной вывод, который позволило сделать исследование, что протективное влияние альфакальцидола на кости в экспериментальной модели исследования на животных не зависит от уровня ПТГ и отчасти осуществляется независимо от его влияния на абсорбцию Са 2+ и результирующей супрессии секреции ПТГ.
Благодаря активной форме, альфакальцидол демонстрирует большую клиническую эффективность по сравнению с нативным витамином D в аспекте увеличения мышечной силы и, соответственно, снижения риска падений. Так, метаанализ 14 РКИ (с общим количеством пациентов 21268) показал статистически значимое снижение абсолютного риска падений в 3,5 раза у пациентов с ОП при терапии активными метаболитами по сравнению с препаратами нативного витамина D 0,79 (95% ДИ 0,64–0,96) против 0,94 (95% ДИ 0,87–1,01) (р = 0,049) [28]. Терапия альфакальцидолом в дозе 1 мгк/сут в течение 12–24 недель сопровождалась относительным увеличением числа мышечных волокон типа А и их поперечного сечения на фоне незначительного уменьшения доли волокон типа В [32]. Кроме того, у пациенток пожилого возраста с дефицитом витамина D терапия альфакальцидолом продолжительностью 24 недели способствовала статистически значимому улучшению мышечной силы (изометрической силы разгибания колена) и функциональных возможностей (расстояние, пройденное за две минуты) [33]. Вероятно некоторые патогенетические факторы возрастной саркопении у пациентов с остеопорозом могут быть уравновешены терапией альфакальцидолом.
Таким образом, альфакальцидол (Альфа Д3–Тева®) — оптимальный препарат витамина D для лечения остеопороза, который не только эффективно повышает МПК, улучшает качество костной ткани, но и оптимизирует нервно-мышечную проводимость и сократимость двигательных мышц, а также координацию движений, что в итоге снижает риск развития падений и переломов.
Литература
* ФГБОУ ВО ОмГМУ МЗ РФ, Омск
** БУЗОО ОКБ, Омск