хеш код что это такое

Как работает hashCode() по умолчанию?

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое

Тривиальная загадка

После корректирования toString() наш кастомный hashCode() перестал вызываться. Мы пропустили тест.

Чем является реализация по умолчанию hashCode()?

Здравый смысл подсказывает, что идентификационный хеш использует целочисленное представление адреса памяти. Об этом свидетельствует документация J2SE на Object.hashCode():

. обычно реализуется с помощью конвертации внутреннего адреса объекта в целочисленное значение, но в Java эта методика не требуется.

Однако с этим связаны проблемы, поскольку контракт метода (method contract) требует:

При применении к одному и тому же объекту более одного раза в ходе выполнения Java-приложения метод hashCode должен в обязательном порядке возвращать одно и то же целочисленное значение.

Учитывая, что JVM будет перемещать объекты (например, при сборке мусора в ходе продвижения или уплотнения), после вычисления идентификационного хеша объекта мы должны сделать так, чтобы он как-то отслеживал местоположение самого объекта.

Например, можно взять текущую позицию объекта в памяти при первом вызове hashCode() и сохранить её где-нибудь, например в заголовке объекта. Тогда при перемещении объекта в другое место с ним переедет и исходный хеш. Недостаток способа: два объекта могут иметь одинаковый хеш, но это разрешено спецификацией.

Лучшим подтверждением будет посмотреть в исходный код. К сожалению, дефолтная java.lang.Object::hashCode() является нативной функцией:

Настоящий hashCode()

Обратите внимание, что идентификационная реализация hashCode() зависит от JVM. Я буду рассматривать только исходный код OpenJDK, помните об этом при каждом дальнейшем упоминании JVM. Все ссылки относятся к набору изменений 5934:87ee5ee27509 дерева Hotspot, и полагаю, что большинство из них применимы и к Oracle JVM, но в других машинах есть свои нюансы.

Можно наивно ожидать, что ObjectSynchronizer::FastHashCode() делает что-то вроде:

Но оказывается, что там функция на сотню строк. А это куда сложнее. По крайней мере, мы можем отметить пару блоков «если-не-существует-то-генерировать»:

Реальное генерирование идентификационного хеша

0. Случайно сгенерированное число.
1. Функция адреса объекта в памяти.
2. Жёстко запрограммированное значение 1 (используется при тестировании на чувствительность (sensitivity testing)).
3. Последовательность.
4. Адрес объекта в памяти, приведённый к целочисленному значению.
5. Состояние потока, объединённое с xorshift (https://en.wikipedia.org/wiki/Xorshift)

Какой метод используется по умолчанию? Согласно globals.hpp, в OpenJDK 8 это метод 5:

Так что, если я не ошибаюсь, как минимум с шестой версии реализация по умолчанию hashCode в OpenJDK не имеет ничего общего с адресом памяти.

Заголовки объектов и синхронизация

Вернёмся немного и рассмотрим пару пропущенных моментов. Во-первых, функция ObjectSynchronizer::FastHashCode() выглядит слишком сложной, в ней используется больше 100 строк кода для выполнения того, что мы считали тривиальной операцией «получить-или-сгенерировать». Во-вторых, что это вообще такое – monitor – и почему у него есть заголовки нашего объекта?

Структура слова mark — хорошее место для начала изысканий. В OpenJDK она выглядит так:

Для 32 и 64 битов формат несколько различается. Во втором случае могут быть два варианта, в зависимости от того, включены ли указатели сжатых объектов (Compressed Object Pointers). В Oracle и OpenJDK 8 по умолчанию они включены.

Таким образом, заголовки объектов могут относиться к свободному блоку или к реальному объекту, так что возможны несколько разных состояний. В простейшем случае («нормальный объект») идентификационный хеш сохраняется напрямую в младшие биты заголовка.

Попробуем ответить на все эти вопросы.

Привязанная блокировка (biased locking)

Привязанные объекты — это результат привязанной блокировки. Это запатентованный механизм, по умолчанию используемый начиная с HotSpot 6. Он пытается снизить стоимость блокирования объектов. Подобные операции дороги, поскольку ради безопасной обработки запросов блокировки/разблокировки объекта от разных потоков их реализации часто опираются на атомарные процессорные инструкции (сравнение с обменом). Но подмечено, что во многих реализациях большинство объектов когда-либо блокируются лишь одним потоком, так что использование атомарных операций зачастую расточительно. Чтобы этого избежать, JVM’ы с привязанной блокировкой позволяют потокам попытаться самостоятельно «привязать» объект. Когда потоку это удаётся, он может блокировать/разблокировать объект без использования атомарных инструкций. А раз у нас нет потоков, борющихся за один и тот же объект, то мы получаем прирост производительности.

Погодите. Здесь просто отменяются привязка и привязанная блокировка объекта (метод false означает «не пытайся снова привязать»). Несколькими строками ниже это остаётся действительно неизменным:

Если я прочитал правильно, то простой запрос идентификационного хеша объекта отключает привязанную блокировку, что предотвратит любые попытки заблокировать объект для использования дорогих атомарных инструкций.

Почему сохранение состояния привязанной блокировки конфликтует с сохранением идентификационного хеша?

Для ответа на этот вопрос мы должны понять, где может находиться слово mark (содержащее идентификационный хеш) в зависимости от состояния блокировки объекта. Ниже показаны возможные переходы:

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое

Моё (возможно, ошибочное) мнение таково.

Для четырёх состояний в верхней части схемы OpenJDK сможет использовать представления thin-блокировок. В простейшем случае (без блокировок) это означает хранение идентификационного хеша и других данных прямо в пространстве слова mark в объекте:

В более сложных случаях это пространство используется для хранения указателя на «запись о блокировке». Тогда слово mark будет «перемещено» в другое место.

Поскольку заблокировать объект у нас только пытается один поток, этот указатель фактически ссылается на область памяти в собственном стеке потока. Это хорошо по двум причинам:

Нашим нуждам удовлетворяет структура ObjectMonitor, которая на схеме называется «тяжёлый монитор». Оставшееся в заголовке объекта значение указывает не на «перемещённое слово mark», а на реальный объект (монитор). Теперь для доступа к идентификационному хешу требуется «получить монитор» (inflating the monitor): сделать указатель на объект и считывать/изменять в зависимости от поля, содержащего перемещённое слово mark. Это дороже и требует координации.

В строках с L640 по L680 выполняется поиск заголовка и проверка на наличие закешированного идентификационного хеша. Я считаю, что это быстрый способ проверки случаев, когда нам не нужно получить монитор.

Начиная с L682 придётся стиснуть зубы:

Это даёт разумное объяснение, почему вызов hashCode() применительно к объекту класса, который не переопределяет реализацию по умолчанию, делает объекты недоступными для привязанной блокировки:

Промежуточные итоги

Бенчмарки

Для проверки своих умозаключений я написал простой тест JMH.

Бенчмарк (исходник) делает нечто вроде этого:

Кастомный хеш в четыре раза ускоряет цикл блокировки/разблокировки по сравнению с идентификационным хешем (который отключает привязанную блокировку). Когда за блокировку конкурируют два потока, привязанная блокировка отключается в любом случае, так что между двумя методам хеширования не наблюдается значимой разницы.

Метод хеширования больше не влияет на результат, и withoutIdHash теряет своё преимущество.

Все бенчмарки прогонялись на Intel Core i5 2,7 ГГц.

Ссылки

Всё, что не является дикими спекуляциями и моими слабыми рассуждениями в попытке осмыслить исходные коды JVM, собрано из разных источников. Основные из них:

Источник

Обеспечение целостности данных с помощью хэш-кодов

Хэш-код является численным значением фиксированной длины, которое однозначно идентифицирует данные. Хэш-коды представляют большие объемы данных в виде намного меньших по объему числовых значений, поэтому они используются с цифровыми подписями. Хэш-код можно подписать более эффективно, чем значение большего размера. Хэш-коды также могут использоваться для проверки целостности данных, пересылаемых по незащищенным каналам. Хэш-код полученных данных можно сравнить с хэш-кодом этих же данных, вычисленным перед их передачей, и на основании этого определить, подвергались ли данные изменениям.

В этом разделе описываются способы создания и проверки хэш-кодов с помощью классов пространства имен System.Security.Cryptography.

Создание хэша

Управляемые классы, реализующие хэширование, можно использовать для хэширования либо байтового массива, либо управляемого объекта потока. В примере ниже хэш-алгоритм SHA1 используется для создания хэш-кода строки. В примере класс UnicodeEncoding используется для преобразования строки в массив байтов, которые хэшируются с помощью класса SHA256. После этого хэш-код выводится на консоль.

Этот код выводит на консоль следующую строку:

185 203 236 22 3 228 27 130 87 23 244 15 87 88 14 43 37 61 106 224 81 172 224 211 104 85 194 197 194 25 120 217

Проверка хэша

Проверку целостности данных можно производить на основании сравнения их с хэш-кодом. Обычно данные хэшируются в некоторый момент времени, а затем их хэш-код защищается каким-либо образом. Позже можно снова хэшировать эти данные и результат сравнивать с защищенным хэш-кодом. Если хэш-коды совпадают, значит, данные не изменялись. Несовпадение хэш-кодов свидетельствует о том, что данные были повреждены. Чтобы такой механизм был работоспособен, защищенный хэш должен быть зашифрован или являться недоступным для всех лиц, не имеющих достаточного доверия.

В примере ниже ранее полученный хэш-код строки сравнивается с ее новым хэш-кодом. В этом примере реализован цикл, производящий побайтовое сравнение хэш-кодов.

Если хэш-коды совпадают, этот код выводит на консоль следующее сообщение:

В противном случае на консоль выводится следующее сообщение:

Источник

Что такое HES-код в Турции и как его получить туристам

Этот материал обновлен 24.06.2021

HES-код — это специальный номер, который получают путешественники перед поездкой в Турцию. Он позволяет властям страны связаться с туристом, если тот контактировал с больными коронавирусной инфекцией.

Сама анкета понадобится, чтобы улететь в Турцию. Ее пассажиры должны предъявить при посадке на рейс в бумажном или электронном виде. Без нее могут не допустить на борт самолета. Подробнее об этом мы рассказывали в отдельной статье.

«HES-код спрашивали только в торговых центрах»

Я отдыхала в Анталье в начале марта 2021 года. На туристическом форуме прочитала, что в городе нельзя оплатить поездки в автобусе по разовому билету — нужно расплачиваться банковской или транспортной картой, к которой придется привязать HES-код.

Отзывы туристов были противоречивыми. Одни утверждали, что без кода не оплатить проезд. Другие говорили, что без проблем купили билет.

В городе у меня спрашивали HES-код только в торговых центрах. Охрана проверяла его в своей системе, поэтому поддельный код показать не получится.

Для чего нужен HES-код

HES-код может понадобиться, чтобы купить билеты на внутренние рейсы в Турции, а также еще в нескольких случаях:

С 15 марта в Стамбуле HES-код будет нужен, чтобы зайти в государственные учреждения, кофейни, парки развлечений, частные школы, салоны красоты, театры, сауны, бильярдные, тематические парки, бани, массажные салоны, спортзалы и другие заведения. Об этом сообщает генеральное консульство России в Стамбуле.

Посольства и консульства пока не сообщили, ужесточат ли требования к наличию кода в других регионах страны.

Напомним, что перед поездкой в Турцию нужно еще получить справку об отсутствии коронавируса. Без нее в страну могут въезжать вакцинированные или переболевшие туристы. Подробно об этом мы рассказали в отдельной статье.

Источник

Алгоритм хеширования данных: просто о сложном

Криптографические хэш-функции распространены очень широко. Они используются для хранения паролей при аутентификации, для защиты данных в системах проверки файлов, для обнаружения вредоносного программного обеспечения, для кодирования информации в блокчейне (блок — основной примитив, обрабатываемый Биткойном и Эфириумом). В этой статье пойдет разговор об алгоритмах хеширования: что это, какие типы бывают, какими свойствами обладают.

В наши дни существует много криптографических алгоритмов. Они бывают разные и отличаются по сложности, разрядности, криптографической надежности, особенностям работы. Алгоритмы хеширования — идея не новая. Они появилась более полувека назад, причем за много лет с принципиальной точки зрения мало что изменилось. Но в результате своего развития хеширование данных приобрело много новых свойств, поэтому его применение в сфере информационных технологий стало уже повсеместным.

Что такое хеш (хэш, hash)?

Хеш или хэш — это криптографическая функция хеширования (function), которую обычно называют просто хэшем. Хеш-функция представляет собой математический алгоритм, который может преобразовать произвольный массив данных в строку фиксированной длины, состоящую из цифр и букв.

Основная идея используемых в данном случае функций — применение детерминированного алгоритма. Речь идет об алгоритмическом процессе, выдающем уникальный и предопределенный результат при получении входных данных. То есть при приеме одних и тех же входных данных будет создаваться та же самая строка фиксированной длины (использование одинакового ввода каждый раз приводит к одинаковому результату). Детерминизм — важное свойство этого алгоритма. И если во входных данных изменить хотя бы один символ, будет создан совершенно другой хэш.

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое

Убедиться в этом можно на любом онлайн-генераторе. Набрав слово «Otus» и воспользовавшись алгоритмом sha1 (Secure Hashing Algorithm), мы получим хеш 7576750f9d76fab50762b5987739c18d99d2aff7. При изменении любой буквы изменится и результат, причем изменится полностью. Мало того, если просто поменять регистр хотя бы одной буквы, итог тоже будет совершенно иным: если написать «otus», алгоритм хэш-функции отработает со следующим результатом: 1bbd70dc1b6fc84e5617ca8703c72c744b3b4fc1. Хотя общие моменты все же есть: строка всегда состоит из сорока символов.

В предыдущем примере речь шла о применении хэш-алгоритма для слова из 4 букв. Но с тем же успехом можно вставить слово из 1000 букв — все равно после обработки данных на выходе получится значение из 40 символов. Аналогичная ситуация будет и при обработке полного собрания сочинений Льва Толстого.

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое

Криптостойкость функций хеширования

Говоря о криптостойкости, предполагают выполнение ряда требований. То есть хороший алгоритм обладает несколькими свойствами: — при изменении одного бита во входных данных, должно наблюдаться изменение всего хэша; — алгоритм должен быть устойчив к коллизиям; — алгоритм должен быть устойчив к восстановлению хешируемых данных, то есть должна обеспечиваться высокая сложность нахождения прообраза, а вычисление хэша не должно быть простым.

Проблемы хэшей

Одна из проблем криптографических функций хеширования — неизбежность коллизий. Раз речь идет о строке фиксированной длины, значит, существует вероятность, что для каждого ввода возможно наличие и других входов, способных привести к тому же самому хешу. В результате хакер может создать коллизию, позволяющую передать вредоносные данные под видом правильного хэша.

Цель хороших криптографических функций — максимально усложнить вероятность нахождения способов генерации входных данных, хешируемых с одинаковым значением. Как уже было сказано ранее, вычисление хэша не должно быть простым, а сам алгоритм должен быть устойчив к «атакам нахождения прообраза». Необходимо, чтобы на практике было чрезвычайно сложно (а лучше — невозможно) вычислить обратные детерминированные шаги, которые предприняты для воспроизведения созданного хешем значения.

Если S = hash (x), то, в идеале, нахождение x должно быть практически невозможным.

Алгоритм MD5 и его подверженность взлому

MD5 hash — один из первых стандартов алгоритма, который применялся в целях проверки целостности файлов (контрольных сумм). Также с его помощью хранили пароли в базах данных web-приложений. Функциональность относительно проста — алгоритм выводит для каждого ввода данных фиксированную 128-битную строку, задействуя для вычисления детерминированного результата однонаправленные тривиальные операции в нескольких раундах. Особенность — простота операций и короткая выходная длина, в результате чего MD5 является относительно легким для взлома. А еще он обладает низкой степенью защиты к атаке типа «дня рождения».

Атака дня рождения

Если поместить 23 человека в одну комнату, можно дать 50%-ную вероятность того, что у двух человек день рождения будет в один и тот же день. Если же количество людей довести до 70-ти, вероятность совпадения по дню рождения приблизится к 99,9 %. Есть и другая интерпретация: если голубям дать возможность сесть в коробки, при условии, что число коробок меньше числа голубей, окажется, что хотя бы в одной из коробок находится более одного голубя.

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое

Вывод прост: если есть фиксированные ограничения на выход, значит, есть и фиксированная степень перестановок, на которых существует возможность обнаружить коллизию.

Когда разговор идет о сопротивлении коллизиям, то алгоритм MD5 действительно очень слаб. Настолько слаб, что даже бытовой Pentium 2,4 ГГц сможет вычислить искусственные хеш-коллизии, затратив на это чуть более нескольких секунд. Всё это в ранние годы стало причиной утечки большого количества предварительных MD5-прообразов.

SHA1, SHA2, SHA3

Secure Hashing Algorithm (SHA1) — алгоритм, созданный Агентством национальной безопасности (NSA). Он создает 160-битные выходные данные фиксированной длины. На деле SHA1 лишь улучшил MD5 и увеличил длину вывода, а также увеличил число однонаправленных операций и их сложность. Однако каких-нибудь фундаментальных улучшений не произошло, особенно когда разговор шел о противодействии более мощным вычислительным машинам. Со временем появилась альтернатива — SHA2, а потом и SHA3. Последний алгоритм уже принципиально отличается по архитектуре и является частью большой схемы алгоритмов хеширования (известен как KECCAK — «Кетч-Ак»). Несмотря на схожесть названия, SHA3 имеет другой внутренний механизм, в котором используются случайные перестановки при обработке данных — «Впитывание» и «Выжимание» (конструкция «губки»).

Что в будущем?

Вне зависимости от того, какие технологии шифрования и криптографические новинки будут использоваться в этом направлении, все сводится к решению одной из двух задач: 1) увеличению сложности внутренних операций хэширования; 2) увеличению длины hash-выхода данных с расчетом на то, что вычислительные мощности атакующих не смогут эффективно вычислять коллизию.

И, несмотря на появление в будущем квантовых компьютеров, специалисты уверены, что правильные инструменты (то же хэширование) способны выдержать испытания временем, ведь ни что не стоит на месте. Дело в том, что с увеличением вычислительных мощностей снижается математическая формализация структуры внутренних алгоритмических хэш-конструкций. А квантовые вычисления наиболее эффективны лишь в отношении к вещам, имеющим строгую математическую структуру.

Источник

Что такое Хэширование? Под капотом блокчейна

Так что же такое хэширование?

Простыми словами, хэширование означает ввод информации любой длины и размера в исходной строке и выдачу результата фиксированной длины заданной алгоритмом функции хэширования. В контексте криптовалют, таких как Биткоин, транзакции после хэширования на выходе выглядят как набор символов определённой алгоритмом длины (Биткоин использует SHA-256).

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое
Input- вводимые данные, hash- хэш

Посмотрим, как работает процесс хэширования. Мы собираемся внести определенные данные. Для этого, мы будем использовать SHA-256 (безопасный алгоритм хэширования из семейства SHA-2, размером 256 бит).

Как видите, в случае SHA-256, независимо от того, насколько объёмные ваши вводимые данные (input), вывод всегда будет иметь фиксированную 256-битную длину. Это крайне необходимо, когда вы имеете дело с огромным количеством данных и транзакций. Таким образом, вместо того, чтобы помнить вводимые данные, которые могут быть огромными, вы можете просто запомнить хэш и отслеживать его. Прежде чем продолжать, необходимо познакомиться с различными свойствами функций хэширования и тем, как они реализуются в блокчейн.

Криптографические хэш-функции

Криптографическая хэш-функция — это специальный класс хэш-функций, который имеет различные свойства, необходимые для криптографии. Существуют определенные свойства, которые должна иметь криптографическая хэш-функция, чтобы считаться безопасной. Давайте разберемся с ними по очереди.

Свойство 1: Детерминированние
Это означает, что независимо от того, сколько раз вы анализируете определенный вход через хэш-функцию, вы всегда получите тот же результат. Это важно, потому что если вы будете получать разные хэши каждый раз, будет невозможно отслеживать ввод.

Свойство 2: Быстрое вычисление
Хэш-функция должна быть способна быстро возвращать хэш-вход. Если процесс не достаточно быстрый, система просто не будет эффективна.

Свойство 3: Сложность обратного вычисления
Сложность обратного вычисления означает, что с учетом H (A) невозможно определить A, где A – вводимые данные и H(А) – хэш. Обратите внимание на использование слова “невозможно” вместо слова “неосуществимо”. Мы уже знаем, что определить исходные данные по их хэш-значению можно. Возьмем пример.

Предположим, вы играете в кости, а итоговое число — это хэш числа, которое появляется из кости. Как вы сможете определить, что такое исходный номер? Просто все, что вам нужно сделать, — это найти хэши всех чисел от 1 до 6 и сравнить. Поскольку хэш-функции детерминированы, хэш конкретного номера всегда будет одним и тем же, поэтому вы можете просто сравнить хэши и узнать исходный номер.

Но это работает только тогда, когда данный объем данных очень мал. Что происходит, когда у вас есть огромный объем данных? Предположим, вы имеете дело с 128-битным хэшем. Единственный метод, с помощью которого вы должны найти исходные данные, — это метод «грубой силы». Метод «грубой силы» означает, что вам нужно выбрать случайный ввод, хэшировать его, а затем сравнить результат с исследуемым хэшем и повторить, пока не найдете совпадение.

Итак, что произойдет, если вы используете этот метод?

Свойство 4: Небольшие изменения в вводимых данных изменяют хэш
Даже если вы внесете небольшие изменения в исходные данные, изменения, которые будут отражены в хэше, будут огромными. Давайте проверим с помощью SHA-256:

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое

Видите? Даже если вы только что изменили регистр первой буквы, обратите внимание, насколько это повлияло на выходной хэш. Это необходимая функция, так как свойство хэширования приводит к одному из основных качеств блокчейна – его неизменности (подробнее об этом позже).

Свойство 5: Коллизионная устойчивость
Учитывая два разных типа исходных данных A и B, где H (A) и H (B) являются их соответствующими хэшами, для H (A) не может быть равен H (B). Это означает, что, по большей части, каждый вход будет иметь свой собственный уникальный хэш. Почему мы сказали «по большей части»? Давайте поговорим об интересной концепции под названием «Парадокс дня рождения».

Что такое парадокс дня рождения?
Если вы случайно встречаете незнакомца на улице, шанс, что у вас совпадут даты дней рождений, очень мал. Фактически, если предположить, что все дни года имеют такую же вероятность дня рождения, шансы другого человека, разделяющего ваш день рождения, составляют 1/365 или 0,27%. Другими словами, он действительно низкий.

Однако, к примеру, если собрать 20-30 человек в одной комнате, шансы двух людей, разделяющих тот же день, резко вырастает. На самом деле, шанс для 2 человек 50-50, разделяющих тот же день рождения при таком раскладе.

Как это применяется в хэшировании?
Предположим, у вас есть 128-битный хэш, который имеет 2 ^ 128 различных вероятностей. Используя парадокс дня рождения, у вас есть 50% шанс разбить коллизионную устойчивость sqrt (2 ^ 128) = 2 ^ 64.

Как вы заметили, намного легче разрушить коллизионную устойчивость, нежели найти обратное вычисление хэша. Для этого обычно требуется много времени. Итак, если вы используете такую функцию, как SHA-256, можно с уверенностью предположить, что если H (A) = H (B), то A = B.

Свойство 6: Головоломка
Свойства Головоломки имеет сильнейшее воздействие на темы касающиеся криптовалют (об этом позже, когда мы углубимся в крипто схемы). Сначала давайте определим свойство, после чего мы подробно рассмотрим каждый термин.

Для каждого выхода «Y», если k выбран из распределения с высокой мин-энтропией, невозможно найти вводные данные x такие, что H (k | x) = Y.

Вероятно, это, выше вашего понимания! Но все в порядке, давайте теперь разберемся с этим определением.

В чем смысл «высокой мин-энтропии»?
Это означает, что распределение, из которого выбрано значение, рассредоточено так, что мы выбираем случайное значение, имеющее незначительную вероятность. В принципе, если вам сказали выбрать число от 1 до 5, это низкое распределение мин-энтропии. Однако, если бы вы выбрали число от 1 до бесконечности, это — высокое распределение мин-энтропии.

Что значит «к|х»?
«|» обозначает конкатенацию. Конкатенация означает объединение двух строк. Например. Если бы я объединила «голубое» и «небо», то результатом было бы «голубоенебо».
Итак, давайте вернемся к определению.

Предположим, у вас есть выходное значение «Y». Если вы выбираете случайное значение «К», невозможно найти значение X, такое, что хэш конкатенации из K и X, выдаст в результате Y.

Еще раз обратите внимание на слово «невозможно», но не исключено, потому что люди занимаются этим постоянно. На самом деле весь процесс майнинга работает на этом (подробнее позже).

Примеры криптографических хэш-функций:

1. Указатели
2. Связанные списки

Указатели
В программировании указатели — это переменные, в которых хранится адрес другой переменной, независимо от используемого языка программирования.

Например, запись int a = 10 означает, что существует некая переменная «a», хранящая в себе целочисленное значение равное 10. Так выглядит стандартная переменная.

Однако, вместо сохранения значений, указатели хранят в себе адреса других переменных. Именно поэтому они и получили свое название, потому как буквально указывают на расположение других переменных.

Связанные списки
Связанный список является одним из наиболее важных элементов в структурах данных. Структура связанного списка выглядит следующим образом:

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое
*Head – заголовок; Data – данные; Pointer – указатель; Record – запись; Null – ноль

Это последовательность блоков, каждый из которых содержит данные, связанные со следующим с помощью указателя. Переменная указателя в данном случае содержит адрес следующего узла, благодаря чему выполняется соединение. Как показано на схеме, последний узел отмечен нулевым указателем, что означает, что он не имеет значения.

Важно отметить, что указатель внутри каждого блока содержит адрес предыдущего. Так формируется цепочка. Возникает вопрос, что это значит для первого блока в списке и где находится его указатель?

Первый блок называется «блоком генезиса», а его указатель находится в самой системе. Выглядит это следующим образом:

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое
*H ( ) – Хэшированные указатели изображаются таким образом

Если вам интересно, что означает «хэш-указатель», то мы с радостью поясним.
Как вы уже поняли, именно на этом основана структура блокчейна. Цепочка блоков представляет собой связанный список. Рассмотрим, как устроена структура блокчейна:

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое
* Hash of previous block header – хэш предыдущего заголовка блока; Merkle Root – Корень Меркла; Transactions – транзакции; Simplified Bitcoin Blockchain – Упрощенный блокчейн Биткоина.

Блокчейн представляет собой связанный список, содержащий данные, а так же указатель хэширования, указывающий на предыдущий блок, создавая таким образов связную цепочку. Что такое хэш-указатель? Он похож на обычный указатель, но вместо того, чтобы просто содержать адрес предыдущего блока, он также содержит хэш данных, находящихся внутри предыдущего блока. Именно эта небольшая настройка делает блокчейн настолько надежным. Представим на секунду, что хакер атакует блок 3 и пытается изменить данные. Из-за свойств хэш-функций даже небольшое изменение в данных сильно изменит хэш. Это означает, что любые незначительные изменения, произведенные в блоке 3, изменят хэш, хранящийся в блоке 2, что, в свою очередь, изменит данные и хэш блока 2, а это приведет к изменениям в блоке 1 и так далее. Цепочка будет полностью изменена, а это невозможно. Но как же выглядит заголовок блока?

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое
* Prev_Hash – предыдущий хэш; Tx – транзакция; Tx_Root – корень транзакции; Timestamp – временная отметка; Nonce – уникальный символ.

Заголовок блока состоит из следующих компонентов:

· Версия: номер версии блока
· Время: текущая временная метка
· Текущая сложная цель (См. ниже)
· Хэш предыдущего блока
· Уникальный символ (См. ниже)
· Хэш корня Меркла

Прямо сейчас, давайте сосредоточимся на том, что из себя представляет хэш корня Меркла. Но до этого нам необходимо разобраться с понятием Дерева Меркла.

Что такое Дерево Меркла?

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое
Источник: Wikipedia

На приведенной выше диаграмме показано, как выглядит дерево Меркла. В дереве Меркла каждый нелистовой узел является хэшем значений их дочерних узлов.

Листовой узел: Листовые узлы являются узлами в самом нижнем ярусе дерева. Поэтому, следуя приведенной выше схеме, листовыми будут считаться узлы L1, L2, L3 и L4.

Дочерние узлы: Для узла все узлы, находящиеся ниже его уровня и которые входят в него, являются его дочерними узлами. На диаграмме узлы с надписью «Hash 0-0» и «Hash 0-1» являются дочерними узлами узла с надписью «Hash 0».

Корневой узел: единственный узел, находящийся на самом высоком уровне, с надписью «Top Hash» является корневым.

Так какое же отношение Дерево Меркла имеет к блокчейну?
Каждый блок содержит большое количество транзакций. Будет очень неэффективно хранить все данные внутри каждого блока в виде серии. Это сделает поиск какой-либо конкретной операции крайне громоздким и займет много времени. Но время, необходимое для выяснения, на принадлежность конкретной транзакции к этому блоку или нет, значительно сокращается, если Вы используете дерево Меркла.

Давайте посмотрим на пример на следующем Хэш-дереве:

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое
Изображение предоставлено проектом: Coursera

Теперь предположим, я хочу узнать, принадлежат ли эти данные блоку или нет:

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое

Вместо того, чтобы проходить через сложный процесс просматривания каждого отдельного процесса хэша, а также видеть принадлежит ли он данным или нет, я просто могу отследить след хэша, ведущий к данным:

хеш код что это такое. Смотреть фото хеш код что это такое. Смотреть картинку хеш код что это такое. Картинка про хеш код что это такое. Фото хеш код что это такое
Это значительно сокращает время.

Хэширование в майнинге: крипто-головоломки.
Когда мы говорим «майнинг», в основном, это означает поиск нового блока, который будет добавлен в блокчейн. Майнеры всего мира постоянно работают над тем, чтобы убедиться, что цепочка продолжает расти. Раньше людям было проще работать, используя для майнинга лишь свои ноутбуки, но со временем они начали формировать «пулы», объединяя при этом мощность компьютеров и майнеров, что может стать проблемой. Существуют ограничения для каждой криптовалюты, например, для биткоина они составляют 21 миллион. Между созданием каждого блока должен быть определенный временной интервал заданный протоколом. Для биткоина время между созданием блока занимает всего 10 минут. Если бы блокам было разрешено создаваться быстрее, это привело бы к:

Процесс Майнинга

Примечание: в этом разделе мы будем говорить о выработке биткоинов.
Когда протокол Биткоина хочет добавить новый блок в цепочку, майнинг – это процедура, которой он следует. Всякий раз, когда появляется новый блок, все их содержимое сначала хэшируется. Если подобранный хэш больше или равен, установленному протоколом уровню сложности, он добавляется в блокчейн, а все в сообществе признают новый блок.

Однако, это не так просто. Вам должно очень повезти, чтобы получить новый блок таким образом. Так как, именно здесь присваивается уникальный символ. Уникальный символ (nonce) — это одноразовый код, который объединен с хэшем блока. Затем эта строка вновь меняется и сравнивается с уровнем сложности. Если она соответствует уровню сложности, то случайный код изменяется. Это повторяется миллион раз до тех пор, пока требования не будут наконец выполнены. Когда же это происходит, то блок добавляется в цепочку блоков.

• Выполняется хэш содержимого нового блока.
• К хэшу добавляется nonce (специальный символ).
• Новая строка снова хэшируется.
• Конечный хэш сравнивается с уровнем сложности, чтобы проверить меньше он его или нет
• Если нет, то nonce изменяется, и процесс повторяется снова.
• Если да, то блок добавляется в цепочку, а общедоступная книга (блокчейн) обновляется и сообщает нодам о присоединении нового блока.
• Майнеры, ответственные за данный процесс, награждаются биткоинами.

Помните номер свойства 6 хэш-функций? Удобство использования задачи?
Для каждого выхода «Y», если k выбран из распределения с высокой мин-энтропией, невозможно найти вход x таким образом, H (k | x) = Y.

Так что, когда дело доходит до майнинга биткоинов:

• К = Уникальный символ
• x = хэш блока
• Y = цель проблемы

Весь процесс абсолютно случайный, основанный на генерации случайных чисел, следующий протоколу Proof Of Work и означающий:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *