Графен что это такое и где используется

Графен, его производство, свойства и применение

Графен, его производство, свойства и применение в электронике и др.

Графен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используетсяГрафен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используется

Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.

Описание графена. Открытие графена:

На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).

Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах. Предполагается, что графен может стать отличной заменой кремнию, особенно в полупроводниковой промышленности, и другим химическим элементам.

Графен был получен двумя британскими учеными российского происхождения Константином Новоселовым и Андреем Геймом, работающими в Университете Манчестера. За «передовые опыты с двумерным материалом – графеном» Константин Новоселов и Андрей Гейм в 2010 г. были удостоены Нобелевской премии. Для получения графена ученые использовали подручные материалы – кусок графита и обычный скотч. Ученые нанесли на липкую ленту небольшое количество графита, после чего ее много раз склеивали и расклеивали ленту, каждый раз разделяя (отшелушивая) вещество пополам. Эти действия ученые проводили до тех пор, пока от образца графита не остался один, последний – прозрачный слой – графен, который перенесли на подложку. Данный способ получения графена именуется методом “отшелушивания”.

Свойства и преимущества графена:

благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,

– в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,

обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди. Его теплопроводность составляет около 5000 Вт/м∙К,

– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света и оптически прозрачен в широком диапазоне от UV до far-IR,

графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,

– самый легкий материал. В 6 раз легче пера,

инертность к окружающей среде,

– впитывает радиоактивные отходы,

благодаря Броуновскому движению (тепловым колебаниям) атомов углерода в листе графена последний способен «производить» электрическую энергию,

– является основой для сборки различных не только самостоятельных двумерных материалов, но и многослойных двумерных гетероструктур,

– при протекании соленой воды по листу графена последний способен генерировать электрическую энергию за счет преобразования кинетической энергии движения потока соленой воды в электрическую (т.н. электрокинетический эффект),

– графен является гидрофобным и абсолютно непроницаем (за исключением воды) материалом для жидкостей и газов, в том числе агрессивных соединений,

– химически нейтрален, стабилен и экологичен.

Источник

Графен с неба, в воде и в вакцинах. Зачем?

2015-2017 годы. ПАУКИ И ГРАФЕН

Группа итальянских исследователей обнаружила, что при нанесении на некоторых пауков водной взвеси графена и углеродных нанотрубок (УНТ) некоторые животные способны включать их в состав своей паутины, что делает ее более прочной.
Можно также и поить их взвесью графена в воде.

Как оказалось, графен не нарушает жизнедеятельность некоторых из насекомых.
То есть не убивает, по крайней мере сразу.

Так, по ударной вязкости, доходящей до 520 Мдж/м2, их паутина десятикратно превосходит кевлар (защита от ножа и пули), что позволяет паукам Дарвина плести нити до 25 метров длиной и даже перекидывать «мосты» из такой паутины через небольшие реки.

Графен может стать частью живого организма, встроиться в него и изменить его свойства.

2016 год. ГРАФЕН И ШЕЛКОПРЯД

Учёные с химического факультета и центра нано- и микромеханики Университета Цинхуа (Пекин) предложили новый способ обогащения шёлкового волокна с помощью углеродных нанотрубок и графена.

Китайские учёные предположили, что для пищеварительной системы шелкопрядов и внедрения в структуру фиброина гораздо более приемлемыми окажутся одностенчатые углеродные нанотрубки диаметром около 1-2 нм.

Кроме одностенчатых нанотрубок, учёные решили скормить шелкопрядам ещё и графен, тоже потенциальный упрочнитель.
Чтобы скормить материалы животным, учёные применили простой метод: они распылили взвесь с одностенчатыми нанотрубками и графеном на листья шелковицы, которыми питаются шелкопряды — а потом собрали продукт из кокона.

Опыт завершился успехом.
Диета шелкопрядов с добавками одностенчатых нанотрубок и графена привела к получению шёлковой нити с улучшенными свойствами.
Нить получена естественным натуральным путём из кокона, как и обычная шёлковая нить.

Учёные изучили спектры комбинационного рассеяния шёлкового волокна и экскрементов шелкопрядов — и подтвердили в обоих случаях внедрение углеродных нанотрубок в шёлковое волокно.
Они также проверили, насколько изменились свойства волокна после внедрения углеродных нанотрубок.

Неудивительно, что после добавления графена и углеродных нанотрубок шёлковая нить стала проводником электричества.
У лучшего образца шёлка с частицами графена электрическая проводимость составила довольно высокие 120 сименс на сантиметр.
Такой шёлк можно использовать в электронике.
Удобно запитывать носимые гаджеты, вшитые прямо в шёлковую одежду.
Собственно, и светящуюся ткань сделать достаточно просто.

Научная статья опубликована 13 сентября 2016 года в журнале Nano Letters (doi: 10.1021/acs.nanolett.6b03597).

Графен может стать частью живого организма, встроиться в него и изменить его свойства.

2020 год. ЛЮДИ И ГРАФЕН

Смотрим сайт «GRAFENE FLAGSHIP».
Он рассказывает о проекте Евросоюза с бюджетом в 1 млрд. евро.
Речь идет о производстве и использовании графена.

Биолог по имени Рикардо Дельгадо и врач Хосе Луис Севильяно, ведущие онлайн-программы под названием «La Quinta Columna», выдвинули версию, по которой руки некоторых людей становятся магнитными именно в том месте, где им сделали прививку.
В этих местах прилипают не только магниты, но и ножницы, металлические детали, инструменты, даже мобильные телефоны!
Это явление не является исключительным для руки.
В течение нескольких дней оно перемещается в сторону груди, шеи или верхней части позвоночника.

Причина?
La Quinta Columna, команда испанских исследователей, обнаружила, что некоторые вакцины содержат оксид графена.

Рикардо Дельгадо:
«Они вводят оксид графена в качестве адъюванта в вакцины против COVID-19.
Он имеет полосу поглощения для частот 5G, что также может служить причиной магнитного явления.
Нановещества внедряются в ампулы с вакциной.
Не только от COVID-19, но и от вакцины против гриппа.
Существует множество свидетельств «магнитного» явления во всем мире.

Они связаны не только с явлением прилипания магнитов и металлических предметов к месту уколов.
Есть еще явления электромагнитной индукции, генерирующей переменные электромагнитные поля внутри тела если использовать измерительные приборы, такие как гауссметр или мультиметр, которые тоже генерируют переменные электрические поля в милливольтном масштабе, но очень необычные, порядка 180 мВ до 200-350 мВ у некоторых людей, особенно в области лба.

Графен может стать частью организма людей и изменить его свойства, например, сделать более электропроводным и способным принимать сотовое излучение, поскольку при попадании внутрь нас он встраивается в нас на некоторое время (например, полгода) и превращается в антенну.

ЗАЧЕМ?
ПОЧЕМУ ИМЕННО ОКСИД ГРАФЕНА?

Вот версия.
Исследователи из компании Graphene Flagship, партнеры SISSA в Италии, ICN2 в Испании и Манчестерского университета в Великобритании, в сотрудничестве с Медицинской школой Рибейран-Прету Университета Сан-Паулу, в модельном исследовании обнаружили, что оксид графена подавляет поведение, связанное с тревогой.
Они обнаружили, что введение оксида графена в определенную область мозга заставляет замолчать нейроны, ответственные за тревожное поведение.

Ученые использовали обычную модель поведения животных, которую описывают следующим образом.
В известном классическом мультфильме «Том и Джерри», Джерри живет в дыре в стене небольшой комнаты, где чувствует себя защищенным и в безопасности.
Обычно мышь исследует комнату свободно и без забот.
Но когда мышь нюхает кошку, она убегает обратно в нору, поскольку знает, что только там безопасно.
Это очень сильное защитное поведение и основа для реакции «бей или беги», которая свойственна большинству животных.

Мышь надолго запоминает такое свое поведение и при малейшем шорохе убегает обратно в нору даже по прошествии недель встречи с кошкой, даже после того, как малейших запах кошки исчез.
Однако, применив точечное введение оксида графена исследователи получили удивительные результаты. «Через два дня после инъекции оксида графена в определенную область мозга мыши она вела себя как другие мыши, которые никогда не ощущали запах кошки в своей домашней среде.
Другими словами, оксид графена подавлял тревожное поведение мышей», – объясняет Лаура Баллерини, ведущий автор статьи и профессор физиологии из компании Graphene Flagship
«Оксид графена взаимодействует с частью мозга, ответственной за формирование воспоминаний, связанных со страхом, которые вызывают беспокойство. Он не действует как лекарство, подавляя функцию каких-то выборочных рецепторов рецепторов, как действуют все другие лекарства.
Вместо этого графен временно останавливает весь механизм формирования воспоминаний на достаточно долгое время, чтобы разрушить связанную со страхом патологию мозга, не повреждая клеток», – продолжает Баллерини.

Таким образом, экспериментально показано, что графен имеет тропизм к нервной ткани и хорошо там накапливается.
А после того как его концентрация в нейросети становится достаточной – он начинает блокировать механизм формирования памяти, переписывая её настолько, что мышь потом никак не реагирует на кота.

БЛАГИЕ НАМЕРЕНИЯ ВЛАСТЕЙ

Путей введения в нас графена немало.
Это и распыление с самолетов, и добавление в воду.
И вакцины (главный способ введения), и многое, многое другое.

Чему нужно учиться теперь?
Нужно учиться лечиться, чтобы выжить самому и помочь близким.

Все это работает, причем здорово!
Особенно с молитвой Тому, Кто создал лечебные растения и минералы!
(читайте мои статьи, там все есть).

Источник

10 способов применения графена, которые изменят вашу жизнь

Графен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используется

Он прочный, он гибкий и он уже здесь: после долгих лет исследований и экспериментов графен приходит в нашу жизнь, а именно – в продукты, которыми мы пользуемся каждый день. В скором времени графен изменит мир смартфонов, аккумуляторов, спортивной экипировки, суперкаров и сверхпроводников. Свойства этого материала настолько невероятные, что некоторые люди даже считают, что графен достался нам от инопланетных кораблей, оставленных на нашей планете задолго до появления человечества.

Это, конечно же, фантастика, но потенциал графена не может не рождать подобные теории заговора. Прошло более 60 лет с тех пор, как ученые и производители электроники впервые попытались раскрыть всю мощь нового материала, однако его практическое применение стало реальным только сейчас. Новости о технологических прорывах в этой области не прекращаются, и очередной всплеск инфоповодов по этой теме состоялся в ходе недавней выставки мобильной электроники MWC 2018. Далее речь пойдет о 10 способах использования графена, которые изменят вашу жизнь в обозримом будущем.

Миниатюрные УФ-сканеры

Графен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используется

Обычная одежда спасает нас от вредных ультрафиолетовых лучей, но зачастую этого бывает недостаточно, особенно в жарких солнечных странах. Проблема будет решена с помощью небольшого гибкого УФ-сканера, который может крепиться на кожу, как обычный пластырь, либо изначально встраиваться в одежду. Когда этот сканер определит, что вы слишком долго находитесь под прямыми солнечными лучами, он отправит соответствующее уведомление на смартфон, предупредив вас об опасности.

Умные стельки для атлетов

Графен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используется

Производители обуви и спортивных товаров также делают большую ставку на графен. Сегодня уже существуют носки и стельки, распознающие силу давления в той или иной области подошвы. Но подавляющее большинство таких продуктов оснащены всего несколькими датчиками, графен позволяет разместить более 100 датчиков, которые никак не повлияют на вес обуви. Прототипы высокотехнологичных стелек существуют уже сегодня, они изготовлены из специальной пены и измеряют давление с точностью до миллиграмма.

Графеновый крио-кулер для охлаждения базовых станций 5G

Графен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используется

Аудиотехника

Графен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используется

Хотя впервые графен был получен в Университете Манчестера, исследования данного материала ведутся по всему миру, а наибольшее число патентов по использованию графена принадлежит Китаю. Неудивительно, что крупнейший производитель электроники в этой стране стал одним из первых брендов, внедривших графен в свои продукты. Так, Xiaomi Mi Pro HD являются наушниками с графеновой диафрагмой, которая позволяет передавать более громкий, чистый и насыщенный звук. Также у Xiaomi есть терапевтический пояс PMA A10 из ткани, покрытой графеном.

Самые эффективные в мире солнечные батареи

Графен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используется

В Италии ученые разрабатывают солнечную батарею на основе графена и органических кристаллов. Такая технология позволяет делать солнечные ячейки более крупными, что повышает эффективность сбора энергии и удешевляет производство в 4 раза.

Графеновые самолеты

В авиации вес – это все, от него напрямую зависит стоимость полета. Именно поэтому Ричард Брэнсон (и другие, менее известные люди) предсказывают полный переход коммерческих авиакомпаний на гораздо более легкий и прочный графен уже в ближайшее десятилетие. И это не просто слова – к примеру, Airbus уже не первый год активно занимается этим направлением.

Чехлы для смартфонов

Чехлы со встроенной батареей так и не прижились на рынке, а проблема быстро разряжающихся мобильных аккумуляторов никуда не делась. Чехлы с задней панелью из графена смогут намного эффективнее охлаждать смартфон, прибавляя до 20% ко времени работы батареи в вашем мобильном устройстве.

Супертонкие электронные книги

На MWC 2017 компания FlexEnable продемонстрировала построенную на основе графена полноцветную пиксельную матрицу для энергоэффективных дисплеев и дисплеев с электронными чернилами. Такие экраны будут иметь толщину обычной бумаги. К тому же, эти матрицы будут гибкими, что избавляет от необходимости использования толстого защитного стекла.

Автомобили

Графен что это такое и где используется. Смотреть фото Графен что это такое и где используется. Смотреть картинку Графен что это такое и где используется. Картинка про Графен что это такое и где используется. Фото Графен что это такое и где используется

Графен раскрывает широкие перспективы для автомобилестроения, в частности для электромобилей. Дело в том, что с изготовленные из графена транспортные средства обладают меньшим весом и большей жесткостью кузова, что позволяет им быстрее ускоряться и расходовать значительно меньше электроэнергии.

Сверхбыстрые зарядки

Что, если бы вы могли зарядить свой смартфон на 100% за 5 минут? Именно столько времени требуется зарядному устройству от Zap & Go. И хотя тестовый прототип имел емкость всего 750 мАч, этот результат не может не впечатлять. А в следующем году инженеры компании обещают снизить этот показатель до 15-20 секунд. Тем временем, в Huawei разработали обычные литий-ионные батареи, которые благодаря применению графена могут работать на температурах до 60 о С, что на 10 превышает показатель стандартных аккумуляторов на 10 градусов, что продлевает срок эксплуатации батареи почти в 2 раза.

Источник

От умной одежды до зелёной энергетики: как использование графена изменит нашу жизнь

Невидимый и прочный

Графен состоит из плотно соединённых атомов углерода, выстроенных в решётку наподобие пчелиных сот толщиной всего в один атом. Это делает его самым тонким материалом в мире, невидимым невооружённым глазом, но при этом очень прочным и эластичным. Впервые графен выделили в 2004 году российские учёные Андрей Гейм и Константин Новосёлов, которые работали тогда в Манчестерском университете. Шесть лет спустя опыты физиков были удостоены Нобелевской премии.

С тех пор исследователи со всех уголков планеты пытались найти всё новые способы применения и, что интересно, получения графена. Ведь одним из главных факторов, мешающих наладить масштабное производство этого чудо-материала, была дороговизна «оригинального» варианта получения графена с помощью сложного процесса разложения графита. Очень быстро графен научились добывать при помощи лазера, используя в качестве сырья обычную древесину, и даже путём взрыва углеродсодержащего материала.

Пока одни учёные соревнуются, чей метод получения графена проще и дешевле, другие находят ему самое необычное применение.

Красота не требует жертв

Специалисты Северо-Западного университета (США) превратили чёрный «от природы» графен в суперстойкую краску для волос.

В ходе эксперимента американские учёные покрыли образцы человеческого волоса раствором из листов графена. Так, физикам удалось превратить светлые, платиновые волосы в угольно-чёрные. Новый цвет оставался стойким на протяжении 30 смывов.

Краска на основе графена обладает дополнительными преимуществами, утверждают американские исследователи. Каждый покрытый ею волос подобен маленькому проводу, способному проводить тепло и электричество. Это означает, что волосы, окрашенные графеновой краской, легко рассеивают статическое электричество и решают проблему электризующихся волос.

Американские учёные также полагают, что их краска абсолютно безвредна.

«Наружный слой ваших волос, или кутикула, выполняет защитную функцию и состоит из тонких клеток наподобие рыбных чешуек. Чтобы приподнять эти чешуйки и позволить молекулам краски быстро проникнуть в волосы, используются аммиак, перекись водорода или органические амины», — сообщил автор исследования Цзясин Хуан.

Из-за подобных манипуляций волосы постепенно истончаются. Проблему позволяет решить краска, которая покрывает волосы, но не проникает в их структуру. Однако такая краска очень быстро смывается. Как утверждают специалисты Северо-Западного университета, их изобретение позволяет справиться с обеими проблемами.

В индустрию моды и красоты графен начал проникать ещё в 2017 году, когда британская компания CuteCircuit представила платье с элементами из этого чудо-материала. Платье Graphene Dress со встроенными светодиодами благодаря графену меняет цвет «в такт» дыханию его обладательницы.

«Материал будущего» выполняет в платье одновременно две задачи: он является датчиком, улавливающим частоту дыхания, а также питает светодиоды, которые и меняют цвет платья. Разработчики умной одежды считают, что графен можно использовать для получения тканей, которые будут радикально менять свой цвет. Презентация Graphene Dress состоялась на родине этого материала — в Манчестере.

Тихая графеновая революция

«У графена очень много интересных физических свойств и явлений, например электронные свойства, которые позволяют использовать графен для конструирования сложных электронных наноустройств. Есть работы, в которых его используют для защиты наночастиц от окисления», — рассказал в беседе с RT старший научный сотрудник кафедры химической кинетики химического факультета МГУ им. М.В. Ломоносова Владимир Боченков.

Кроме того, графен поможет решить одну из главных задач современности — получить недорогие, надёжные и экологически безопасные источники энергии. Так, графеновые композиты позволяют создать более эффективные солнечные панели. Учёные из Массачусетского технологического института доказали, что при помощи графена можно сделать эластичные, дешёвые и прозрачные солнечные элементы, превращающие практически любую поверхность в источник электроэнергии. Солнечные батареи из графена, по словам учёных, могут производить энергию даже в дождь.

«В графене можно делать определённые отверстия, выбивая некоторые атомы углерода, и получать регулируемые поры, которые можно использовать в качестве мембраны в батареях и топливных ячейках. Также мембраны на основе графена могут удешевить производство тяжёлой воды. Она необходима в атомной промышленности для получения относительно экологически чистой энергии. Здесь опять же уникальные свойства графена позволяют быстрее разделять субатомные частицы, делая весь процесс очень экономичным. В результате мы получаем более зелёную и дешёвую атомную энергию», — отметил Боченков.

Крупнейшие технологические компании уже приступили к созданию литийионных аккумуляторов для смартфонов с использованием графена. Инновационная технология позволяет заряжать батарею быстрее и хранить заряд дольше.

Графен можно использовать в качестве мембраны для фильтрации атомов водорода в воздухе и получить биологически чистое топливо. К такому выводу пришли первооткрыватели графена. Андрей Гейм и Константин Новосёлов выяснили, что при высоких температурах и присутствии платины в качестве ускорителя реакции графен пропускает положительно заряженные ионы водорода (протоны) и задерживает практически всё остальное. Такая технология поможет совершить прорыв в развитии зелёной энергетики.

Взяли на вооружение графен и производители военной продукции. Выяснилось, что материал обладает пуленепробиваемыми свойствами. Учёные из Нью-Йоркского университета получили очень прочные и почти невесомые бронежилеты. В ходе эксперимента физики запустили стеклянную микропулю в листы графена толщиной от десяти до 100 слоёв. Графен рассеял энергию пули, летящей на скорости 3000 м/с. Однако в точке удара материал вытянулся в форме конуса, а затем треснул. Появление трещин не позволяет пока поставить графеновые бронежилеты на службу полицейским. По оценкам специалистов, чтобы защитить своих обладателей, такие бронежилеты должны состоять из миллионов слоёв графена. А для этого требуется наладить его производство в промышленных масштабах.

Проник графен и в биологию. В 2016 году китайские учёные накормили шелкопрядов тутовыми листьями, которые были сбрызнуты препаратами, содержащими графен. В итоге экспериментаторы получили прочную и хорошо проводящую электричество графеновую шёлковую нить.

«Экспериментов с графеном проводится масса. Потенциал этого материала невероятно широк. Думаю, через несколько лет графен будет использоваться в создании и различных детекторов света, и контактных линз, и вообще чего угодно. Практическое применение этого материала может ограничиваться лишь фантазией учёных», — заключил Боченков.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *