Гидроксид натрия с чем может реагировать
Гидроксид натрия: способы получения и химические свойства
Гидроксид натрия (едкий натр) NaOH — белый, гигроскопичный, плавится и кипит без разложения. Хорошо растворяется в воде.
Относительная молекулярная масса Mr = 40; относительная плотность для тв. и ж. состояния d = 2,130; tпл = 321º C; tкип = 1390º C;
Способы получения
1. Гидроксид натрия получают электролизом раствора хлорида натрия :
2NaCl + 2H2O → 2NaOH + H2 + Cl2
2. При взаимодействии натрия, оксида натрия, гидрида натрия и пероксида натрия с водой также образуется гидроксид натрия:
2Na + 2H2O → 2NaOH + H2
Na2O + H2O → 2NaOH
2NaH + 2H2O → 2NaOH + H2
3. Карбонат натрия при взаимодействии с гидроксидом кальция образует гидроксид натрия:
Качественная реакция
Химические свойства
1. Гидроксид натрия реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:
в растворе образуется комплексная соль — тетрагидроксоалюминат:
4. С кислыми солями гидроксид натрия также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:
5. Гидроксид натрия взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).
При этом кремний окисляется до силиката и водорода:
Фтор окисляет щелочь. При этом выделяется молекулярный кислород:
Другие галогены, сера и фосфор — диспропорционируют в растворе гидроксида натрия:
Сера взаимодействует с гидроксидом натрия только при нагревании:
В растворе образуются комплексная соль и водород:
2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2
Хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):
2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl
NH4Cl + NaOH = NH3 + H2O + NaCl
8. Гидроксид натрия разлагается при нагревании до температуры 600°С:
2NaOH → Na2O + H2O
NaOH ↔ Na + + OH —
4NaOH → 4Na + O2 + 2H2O
Натрий: способы получения и химические свойства
Натрий — это щелочной металл, серебристо-белого цвета. Легкий, очень мягкий, низкая температура плавления.
Относительная молекулярная масса Mr = 22,990; относительная плотность по твердому состоянию d = 0,968; относительная плотность по жидкому состоянию d = 0, 27; tпл = 97,83º C; tкип = 886º C.
Способ получения
1. Натрий получают в промышленности электролизом расплава гидроксида натрия, в результате образуется натрий, кислород и вода:
4NaOH → 4Na + O2↑ + 2H2O
Качественная реакция
Химические свойства
Натрий — активный металл; на воздухе реагирует с кислородом и покрывается оксидной пленкой. Воспламеняется при умеренном нагревании; окрашивает пламя газовой горелки в темно-красный цвет.
1.1. Натрий легко реагирует с галогенами с образованием галогенидов:
2Na + I2 = 2NaI
1.2. Натрий реагирует с серой с образованием сульфида натрия:
2Na + S = Na2S
3Na + P = Na3P
2Na + H2 = 2NaH
1.4. С азотом натрий реагирует при температуре 100º С и электрическом разряде с образованием нитрида:
1.5. Натрий реагирует с углеродом с образованием карбида:
1.6. При взаимодействии с кислородом при температуре 250–400º C натрий образует пероксид натрия:
2. Натрий активно взаимодействует со сложными веществами:
2Na 0 + 2 H2 O = 2 Na + OH + H2 0
2Na + 2HCl = 2NaCl + H2 ↑
2.4. Н атрий может взаимодействовать с гидроксидами:
2Na + 2NaOH = 2Na2O + H2
Что такое гидроксид натрия и где мы с ним сталкиваемся в быту
Сегодня хочу рассказать об очередном интересном химическом веществе, с которым мы часто сталкиваемся в быту. Это гидроксид натрия.
Что это такое
По традиции, как было, например, с глауберовой солью или аммиаком, начинаю с названий. Так уже исторически сложилось, что почти у всех химических веществ не одно, а несколько названий. Посмотрите, как по-другому можно назвать гидроксид натрия:
По своему виду это твердые белые кристаллы, которые очень легко впитывают в себя воду, даже ту, которая есть в воздухе, а вместе с ними – и содержащийся в воздухе углекислый газ. Поэтому, если это вещество хранить в открытой или неплотно закрытой таре, то можно в итоге запросто получить бесформенную, расплывшуюся белую массу, которую весьма проблематично будет добыть из этой тары. Особенно если она была стеклянная.
Впрочем, сейчас каустик уже практически не хранят в стеклянной посуде, перешли на пластмассовую. Почему? Потому что он вступает в химическую реакцию со стеклом и разъедает, разрушает его. Естественно, не мгновенно, а при длительном хранении. Это называется выщелачивание стекла – гидроксид натрия взаимодействует с соединениями кремния, которые входят в состав стекла.
Я уже рассказывала, что, когда организуете свою домашнюю лабораторию и делаете раствор гидроксида натрия, то хранить такой раствор нужно в пластиковой бутылке, но никак не в стеклянной.
Что еще нужно знать про физические свойства этого вещества? Оно хорошо растворяется в воде с выделением достаточно большого количества тепла.
Если вдруг захотите потрогать руками (настоятельно не советую!), то обнаружите эффект мыльных рук. Ну а следом за этим – достаточно чувствительные и долго не заживающие ожоги кожи – едкий натр полностью оправдывает это свое название.
В природе это вещество не встречается, его получают в промышленности химическими или электрохимическими способами. Кстати, используется это вещество в достаточно больших количествах – около 60 миллионов тон в год во всем мире. Для чего? Давайте посмотрим.
Применение
Начнем с самого простого – без едкого натра не обойдется ни одно производство мыла. Любого. Хозяйственное, туалетное, банное, детское, гипоаллергенное, антибактериальное, с запахом, без запаха…
Любое мыло, включая самодельное (если оно делается с самого начала, а не из уже готовых компонентов, которые уже прошли эту химическую реакцию), невозможно без гидроксида натрия, это – основной компонент мыла. Поэтому когда я слышу что-нибудь типа «Это – натуральное мыло, в нем нет никакой химии», меня сразу пробивает на смех.
Мыло – это типичный, классический случай применения химии в жизни человека. И, на мой взгляд, далеко не самый плохой и бесполезный.
Следующая довольно обширная область применения едкого натра – в производстве бумаги, картона и различных искусственных волокон и полимеров.
Не отстает от бумажной и текстильная промышленность – гидроксидом натрия обрабатывают хлопок и шерсть.
Само собой разумеется, что без этого интересного и важного вещества не обходится ни одна химическая лаборатория. Это – стандартный и неотъемлемый реактив любой лаборатории.
Это же касается и химической промышленности. Химические свойства гидроксида натрия позволяют его применять и как катализатор, и для нейтрализации различных кислот, и в производстве масел, и многое-многое другое.
В быту это вещество встречается в составе средств для прочистки канализационных труб. Самый простой пример – «Крот», о котором я в свое время много писала. Гидроксид натрия используют здесь именно из-за его высокой химической активности, «агрессивности», способности растворять сильные загрязнения, в том числе жиры и остатки пищи, которые порой скапливаются в кухонных трубах.
Как ни удивительно, не обошлось без него и в пищевой промышленности. Пусть не в таких масштабных количествах, как в том же производстве бумаги или мыла, но и здесь гидроксид натрия на своем месте. Он даже является пищевой добавкой Е524. Его используют в производстве шоколада, какао, мороженого, газированных напитков, карамели, выпечки. Естественно, в очень небольших количествах, но, тем не менее, без него не обойтись.
Еще одна область использования – в автомобильных щелочных аккумуляторах. Правда, не знаю, насколько такие аккумуляторы сейчас востребованы.
Из своей практики помню случай, когда работала в Курчатове, и военные, охранявшие территорию нашего Института, попросили сделать электролит для аккумулятора с плотностью 1,27. Честь возиться с щелочью выпала мне как молодой, только что пришедшей на работу лаборантке.
До сих пор помню, как тщательно растворяла и фильтровала раствор, а потом замеряла ареометром, будто от этого зависела моя жизнь
Что же касается косметологии, то гидроокись натрия напрямую используется для удаления бородавок. Если вы сталкивались с этим, то наверняка можете вспомнить, как покупали маленькие пластиковые флаконы с надписью «Чистотел» или что-то в этом духе. Растение чистотел здесь совершенно не при чем. В пузырьке налит именно раствор гидроксида щелочи. Аккуратно наносишь его на ороговевшую часть кожи и ждешь – а вдруг поможет.
На своем опыте (давно, правда, это было, еще на третьем курсе университета) могу сказать, что действительно помогает, если делать это регулярно.
Кроме того, все шампуни и моющие средства содержат небольшие количества этого вещества. Именно поэтому косметологи рекомендуют после мытья головы шампунем ополаскивать ее слабым раствором яблочного или обычного уксуса – именно для нейтрализации щелочи, содержащейся в шампуни.
Техника безопасности
Гидроксид натрия – сильная щелочь (второй класс опасности), с которой нужно обращаться осторожно, так как она вызывает сильные химические ожоги, а при длительном воздействии – долго не заживающие язвы.
Вот краткие правила по обращению с ним:
Несмотря на то, что это вещество пожаро- и взрывобезопасно, хранить его нужно, как я уже говорила, в пластмассовой таре или пластиковых мешках, герметично запечатанных. Вдали от источников тепла и прямых солнечных лучей. Помещение для хранения должно быть прохладным и сухим.
Если вы решили прочистить дома канализационные трубы и купили для этого специальное средство, то внимательно прочитайте инструкцию к нему. Как правило, в состав этого средства будет входить гидроксид натрия, а в инструкции будет написано, что с ним необходимо работать в резиновых перчатках и избегать вдыхания паров. Думаю, не нужно объяснять, почему?
Итоги
Итак, я рассказала в общих чертах о гидроксиде натрия, который, оказывается, используют не только химики в лабораториях, но с ним мы сталкиваемся и в быту.
О химических свойствах предлагаю поговорит в следующей статье. Заодно я расскажу и покажу несколько опытов, которые вы легко сможете сделать самостоятельно.
Надеюсь, вам понравилась моя статья. Рассказывайте в комментариях свои случаи из жизни, дополняйте или поправляйте меня, если с чем-то не согласны. Надеюсь, вам, как и мне, всегда интересно узнавать что-то новое.
До встречи в следующей статье!
Основания. Химические свойства и способы получения
Перед изучением этого раздела рекомендую прочитать следующую статью:
Получение оснований
1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:
основный оксид + вода = основание
Na2O + H2O → 2NaOH
При этом оксид меди (II) с водой не реагирует:
CuO + H2O ≠
2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.
металл + вода = щёлочь + водород
2K 0 + 2 H2 + O → 2 K + OH + H2 0
2NaCl + 2H2O → 2NaOH + H2↑ + Cl2↑
4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:
щелочь + соль1 = соль2↓ + щелочь
щелочь + соль1 = соль2↓ + щелочь
Например: карбонат калия реагирует в растворе с гидроксидом кальция:
Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):
CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl
Химические свойства нерастворимых оснований
1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода.
нерастворимое основание + кислота = соль + вода
нерастворимое основание + кислотный оксид = соль + вода
При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:
2. Нерастворимые основания разлагаются при нагревании на оксид и воду.
3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.
нерастворимое оснвоание + амфотерный оксид ≠
нерастворимое основание + амфотерный гидроксид ≠
4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).
Химические свойства щелочей
щёлочь(избыток)+ кислота = средняя соль + вода
щёлочь + многоосновная кислота(избыток) = кислая соль + вода
При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.
При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:
В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.
щёлочь (расплав) + амфотерный оксид = средняя соль + вода
щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода
щёлочь (раствор) + амфотерный оксид = комплексная соль
щёлочь (раствор) + амфотерный гидроксид = комплексная соль
А в растворе образуется комплексная соль:
Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (к ак правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.
3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:
щёлочь(избыток) + кислотный оксид = средняя соль + вода
щёлочь + кислотный оксид(избыток) = кислая соль
А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:
2NaOH + CO2 = NaHCO3
щёлочь + растворимая соль = соль + соответствующий гидроксид
Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.
Cu 2+ SO4 2- + 2Na + OH — = Cu 2+ (OH)2 — ↓ + Na2 + SO4 2-
Также щёлочи взаимодействуют с растворами солей аммония.
Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:
соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль
соль амф.металла + щёлочь(избыток) = комплексная соль + соль
5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.
кислая соль + щёлочь = средняя соль + вода
Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.
6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.
! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!
2Al + 2NaOH + 6 H2 + O = 2Na[ Al +3 (OH)4] + 3 H2 0
7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):
NaOH +О2 ≠
NaOH +N2 ≠
NaOH +C ≠
Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).
2NaOH +Cl2 0 = NaCl — + NaOCl + + H2O
6NaOH +Cl2 0 = 5NaCl — + NaCl +5 O3 + 3H2O
Кремний окисляется щелочами до степени окисления +4.
2NaOH + Si 0 + H2 + O= Na2Si +4 O3 + 2H2 0
Фтор окисляет щёлочи:
Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.
8. Щёлочи не разлагаются при нагревании.
Исключение — гидроксид лития:
2LiOH = Li2O + H2O
Гидроксид натрия: формула, уравнения реакций, свойства
Гидроксид натрия, формула которого — NaOH, относится к разряду сильных щелочей, едких и опасных для человека, но несмотря на это, каждый человек встречается с гидроокисью натрия ежедневно. В косметических и фармацевтических средствах, в бытовой химии и даже в пищевых продуктах.
Свойства едкой щелочи
Гидроокись (гидроксид) натрия называют также едким натром, едкой щёлочью (такое название обусловлено способностью вещества разъедать стекло, кожу, бумагу, вызывать сильнейшие химические ожоги) и каустической содой (каустик — от греч. kaustikos жгучий, едкий).
Физические свойства
Гидроксид натрия выпускается в виде гранул белого цвета, скользких на ощупь.
Растворение вещества в воде, происходит с выделением большого количества тепла. Гидроксид натрия является гигроскопичным веществом, т. е. он активно поглощает водяные пары из воздуха. А также каустик способен поглощать углекислый газ, образуя на воздухе NaНCO3.
Молярная масса NaOH равна 39,997 г/моль, плотность вещества 2,02 г/см3, растворимость в воде 108,7 г/100 мл, температуры кипения и плавления для каустической соды равны соответственно 1403 °C и 323 °C.
Молекулы гидроокиси натрия полностью диссоциируют на ионы в водных растворах, а значит едкий натр — сильное основание. Водные растворы гидроокиси натрия обладают сильнейшей щелочной реакцией (pH 1%-раствора = 13).
Химические свойства
NaOH способен вступать в реакции с кислотами (серной H2SO4, угольной H2CO3, соляной HCl и другими), в результате чего образуются соли и вода:
С кислотными оксидами в результате взаимодействия образуются соль и вода:
C основными оксидами реакция не идёт: MgO/ Bao /CaO + NaOH ≠.
C амфотерными оксидами гидроксид натрия также образует соли и воду: ZnO + 2NaOH + H2O → Na2[Zn (OH)4] (раствор).
C солями гидроокись натрия реагирует при условии, что в результате будет образовано нерастворимое как, например, в реакции с сульфатом меди (CuSO4 + NaOH), газообразное вещество или вода:
C неметаллами:
C металлами гидроокись натрия реагирует с цинком (Zn), алюминием (Al), титаном (Ti). C железом же и медью NaOH не взаимодействует. Примеры:
C жирами щёлочь реагирует с образованием мыла: (C17H35COO)3C3H5 + 3NaOH → C3H5 (OH)3 + 3C17H35COONa.
Методы получения вещества
Промышленные методы, с помощью которых можно получить едкий натр, делятся на химические и электрохимические.
Химические методы
Существует три основных химических метода.
Пиролитический метод состоит из двух стадий:
Известковый метод: взаимодействие карбоната натрия (соды) с гашёной известью (гидроксидом кальция) при температуре (80 °C) называют каустификацией. Результатом такой реакции является раствор каустической соды и осадок карбоната кальция.
Уравнение реакции: Na2CО3 + Са (ОН)2 = CaCО3 ↓ + 2NaOH.
Ферритный метод получения может происходить двумя способами:
Серьёзными недостатками таких способов является большой расход энергии и сильная загрязнённость продукта. Такие методы получения NaOH в настоящее время почти не используются в промышленности.
Электрохимические методы
Из минерала галита, состоящего преимущественно из NaCl, с помощью электролиза получают гидроксид натрия. Помимо щёлочи в результате такой реакции, получают ещё и хлор и водород.
Записать процесс можно уравнением: 2NaCl + 2H2O → H2↑ + Cl2↑ + 2NaOH.
В лабораторных условиях щёлочь можно получить, например:
Но в настоящее время химические методы получения редко используются в лаборатории, чаще используют электрохимические методы.
Области применения
Гидроокись натрия применяют в различных областях промышленности, в производстве, а также широко применяется для бытовых нужд:
Химическая опасность
Вещества, относящиеся ко второму (II) классу опасности — высокоопасные вещества — требуют применения защитных средств (химически устойчивая одежда, очки, перчатки), строгого соблюдения правил работы в лаборатории, осторожности и внимательности.
Едкий натр при попадании на кожу вызывает серьёзные химические ожоги, а при попадании в глаза способен вызвать серьёзные поражения зрения, вплоть до повреждения зрительного нерва и, как результат, — слепоты.
Необходимо помнить, что нейтрализовать действие каустика при попадании на слизистые или кожу можно слабыми растворами борной или уксусной кислоты. Глаза следует промывать слабым раствором борной кислоты и водой.