Гетерозиготные и гомозиготные в чем разница

Что значит быть гомозиготным?

В общем, у людей одни и те же гены. Разнообразны разные гены. Они контролируют наши физические характеристики и здоровье.Каждая вариация называется аллелем. Вы наследуете по два аллеля для каждого ген

Содержание:

Гомозиготное определение

В общем, у людей одни и те же гены. Разнообразны разные гены. Они контролируют наши физические характеристики и здоровье.

Если аллели идентичны, вы гомозиготны по этому конкретному гену. Например, это может означать, что у вас есть два аллеля гена, вызывающего карие глаза.

Читайте дальше, чтобы узнать о гомозиготном генотипе, а также о примерах и рисках заболевания.

Разница между гомозиготными и гетерозиготными

Термин «гетерозиготный» также относится к паре аллелей. В отличие от гомозигот, гетерозиготность означает, что у вас два разные аллели. Вы унаследовали разные версии от каждого родителя.

В гетерозиготном генотипе доминантный аллель преобладает над рецессивным. Таким образом, будет выражена доминирующая черта. Рецессивная черта не проявляется, но вы все еще носитель. Это означает, что вы можете передать его своим детям.

Гомозиготные примеры

Гомозиготный генотип может проявляться по-разному, например:

Цвет глаз

Аллель коричневого цвета глаз доминирует над аллелем голубых глаз. У вас могут быть карие глаза, будь вы гомозиготным (два аллеля для карих глаз) или гетерозиготным (один для карих глаз и один для голубых).

Это не похоже на аллель голубых глаз, который является рецессивным. Чтобы иметь голубые глаза, вам нужны два одинаковых аллеля голубых глаз.

Веснушки

MC1R ген контролирует веснушки. Черта также является доминирующей. Если у вас нет веснушек, это означает, что вы гомозиготны по рецессивной версии, которая их не вызывает.

Цвет волос

Они могут передать аллель рыжих волос своим будущим детям. Если ребенок наследует тот же аллель от другого родителя, он будет гомозиготным и будет иметь рыжие волосы.

Гомозиготные гены и болезнь

Некоторые заболевания вызваны мутировавшими аллелями. Если аллель рецессивный, он с большей вероятностью вызовет заболевание у людей, гомозиготных по этому мутировавшему гену.

Этот риск связан со способом взаимодействия доминантных и рецессивных аллелей. Если бы вы были гетерозиготными по мутировавшему рецессивному аллелю, преобладал бы нормальный доминантный аллель. Заболевание может выражаться слабо или совсем не выражаться.

Если вы гомозиготны по рецессивному мутировавшему гену, у вас более высокий риск заболевания. У вас нет доминантного аллеля, который бы маскировал его действие.

Следующие генетические состояния чаще влияют на гомозиготных по ним людей:

Муковисцидоз

Регулятор трансмембранной проводимости при муковисцидозе (CFTR) ген вырабатывает белок, который контролирует движение жидкости в клетки и из них.

Если вы унаследуете две мутировавшие копии этого гена, у вас муковисцидоз (МВ). Каждый человек с МВ гомозиготен по этой мутации.

Мутация вызывает накопление густой слизи, что приводит к:

Серповидноклеточная анемия

Субъединица гемоглобина бета (ГБД) ген помогает производить бета-глобин, который является частью гемоглобина в красных кровяных тельцах. Гемоглобин позволяет эритроцитам доставлять кислород по всему телу.

При серповидно-клеточной анемии существует две копии ГБД генная мутация. Мутировавшие аллели образуют аномальный бета-глобин, что приводит к низкому уровню эритроцитов и ухудшению кровоснабжения.

фенилкетонурия

Фенилкетонурия (ФКУ) возникает, когда человек гомозиготен по фенилаланингидроксилазе (PAH) генная мутация.

Обычно ген PAH инструктирует клетки производить фермент, который расщепляет аминокислоту, называемую фенилаланином. При ФКУ клетки не могут вырабатывать фермент. Это заставляет фенилаланин накапливаться в тканях и крови.

Больному фенилкетонурией необходимо ограничить количество фенилаланина в своем рационе. В противном случае у них могут развиться:

Мутация гена метилентетрагидрофолатредуктазы (MTHFR)

MTHFR Ген инструктирует наш организм вырабатывать метилентетрагидрофолатредуктазу, фермент, расщепляющий гомоцистеин.

В MTHFR мутация гена, ген не производит фермент. Две заметные мутации включают:

Пока ученые все еще изучают MTHFR мутации, это было связано с:

навынос

У всех нас есть две аллели или версии каждого гена. Гомозиготность по определенному гену означает, что вы унаследовали две идентичные версии. Это противоположность гетерозиготного генотипа, где аллели разные.

Люди с рецессивными признаками, такими как голубые глаза или рыжие волосы, всегда гомозиготны по этому гену. Рецессивный аллель выражен потому, что нет доминантного аллеля, который бы его замаскировал.

Источник

Аллельные гены, их свойства. Гомозиготы и гетерозиготы

Генетика – наука, которая изучает гены, механизмы наследования признаков и изменчивость организмов. В процессе размножения ряд признаков передается потомству. Было замечено еще в девятнадцатом столетии, что живые организмы наследуют особенности своих родителей. Первым, кто описал эти закономерности, был Г.Мендель.

Наследственность – свойство отдельных особей передавать потомству свои признаки при помощи размножения (через половые и соматические клетки). Так сохраняются особенности организмов в ряде поколений. При передаче наследственной информации не происходит точное ее копирование, а всегда присутствует изменчивость.

Изменчивость – приобретение индивидуумами новых свойств или утрата старых. Это важное звено в процессе эволюции и адаптации живых существ. То, что в мире нет идентичных особей – это заслуга изменчивости.

Наследование признаков осуществляется с помощью элементарных единиц наследования – генов. Совокупность генов определяет генотип организма. Каждый ген несет в себе закодированную информацию и расположен в определенном месте ДНК.

Свойства генов

Гетерозиготные и гомозиготные в чем разница. Смотреть фото Гетерозиготные и гомозиготные в чем разница. Смотреть картинку Гетерозиготные и гомозиготные в чем разница. Картинка про Гетерозиготные и гомозиготные в чем разница. Фото Гетерозиготные и гомозиготные в чем разница

Гены обладают рядом специфических свойств:

Под действием условий внешней среды генотип дает разные фенотипы. Фенотип определяет степень влияния на организм окружающих условий.

Аллельные гены

Клетки нашего организма имеют диплоидный набор хромосом, они в свою очередь состоят из пары хроматид, разбитых на участки (гены). Разные формы одинаковых генов (например карие/голубые глаза), расположены в одних и тех же локусах гомологичных хромосом, носят название аллельных генов. В диплоидных клетках гены представлены двумя аллелями, один от отца, другой от матери.

Аллели делятся на доминантные и рецессивные. Доминантная аллель определят, какой признак будет выражен в фенотипе, а рецессивная – передается по наследству, но в гетерозиготном организме не проявляется.

Существуют аллели с частичной доминантностью, такое состояние называется кодоминантностью, в таком случае оба признака будут проявляться в фенотипе. Например, скрещивали цветы с красными и белыми соцветиями, в результате в следующем поколении получили красные, розовые и белые цветы (розовые соцветия и есть проявлением кодоминантности). Все аллели обозначают буквами латинского алфавита: большими – доминантные (АА, ВВ), маленькими – рецессивные (аа,bb).

Гомозиготы и гетерозиготы

Гомозигота – это организм, в котором аллели представлены только доминантными или рецессивными генами.

Гомозиготность означает наличие одинаковых аллелей в обеих хромосомах (АА, bb). В гомозиготных организмах они кодируют одни и те же признаки (например, белый цвет лепестков роз), в таком случае все потомство получит такой же генотип и фенотипические проявления.

Гетерозигота – это организм, в котором аллели имеют и доминантный, и рецессивный гены.

Гетерозиготность — наличие разных аллельных генов в гомологичных участках хромосом (Аа, Вb). Фенотип у гетерозиготных организмов всегда будет одинаков и определяется доминантным геном.

Например, А – карие глаза, а – голубые глаза, у особи с генотипом Аа будут карие глаза.

Для гетерозиготных форм характерно расщепление, когда при скрещивании двух гетерозиготных организмов в первом поколении мы получаем следующий результат: по фенотипу 3:1, по генотипу 1:2:1.

Примером может послужить наследование темных и светлых волос, если у обоих родителей они темные. А – доминантная аллель по признаку темных волос, а – рецессивная (светлые волосы).

Р: Аа х Аа

Г: А, а, А, а

F: АА:2Аа:аа

*Где Р – родители, Г – гаметы, F – потомство.

По данной схеме можно увидеть, что вероятность унаследовать от родителей доминантный признак (темные волосы) в три раза выше, чем рецессивный.

Дигетерозигота – гетерозиготная особь, которая несет две пары альтернативных признаков. Например, исследование наследования признаков Менделем с помощью семян гороха. Доминантными характеристиками были желтый цвет и гладкая поверхность семян, а рецессивными — зеленый цвет и шероховатая поверхность. В результате скрещивания получилось девять различных генотипов и четыре фенотипа.

Гемизигота – это организм с одним аллельным геном, даже если он рецессивный, фенотипически всегда будет проявляться. В норме они присутствуют в половых хромосомах.

Отличие гомозиготы и гетерозиготы (таблица)

Отличия гомозиготных организмов от гетерозиготных
ХарактеристикаГомозиготаГетерозигота
Аллели гомологичных хромосомОдинаковыеРазные
ГенотипAA, aaAa
Фенотип определяется по признакуПо рецессивному или доминатномуПо доминатному
Однообразие первого поколения++
РасщеплениеНе происходитСо второго поколения
Проявление рецессивного генаХарактерноПодавляется

Размножение, скрещивание гомозигот и гетерозигот ведет к образованию новых признаков, которые необходимы живым организмам для адаптации к переменчивым условиям внешней среды. Их свойства необходимы при выведении культур, пород с высокими качественными показателями.

Источник

Разница между гомозиготным и гетерозиготным

Гетерозиготные и гомозиготные в чем разница. Смотреть фото Гетерозиготные и гомозиготные в чем разница. Смотреть картинку Гетерозиготные и гомозиготные в чем разница. Картинка про Гетерозиготные и гомозиготные в чем разница. Фото Гетерозиготные и гомозиготные в чем разница

Поскольку люди являются диплоидными организмами, содержащими две копии каждой хромосомы, которые наследуют полный набор хромосом от своей матери и полный набор от своего отца. Эти две хромосомы, которые соответствуют друг другу, называются гомологичными хромосомами. Даже локус (местоположение) является одним и тем же из этих генов в гомологичных хромосомах.

Гомологичные пары хромосом состоят из одинаковых аллелей (как черных, так и коричневых) или разных аллелей (черных и коричневых). На основании этих возможных результатов мы можем различать, являются ли они одинаковыми аллелями, т.е. гомозиготными, или разными аллелями, т.е. гетерозиготными.

Сравнительная таблица

Основа для сравненияГомозиготнымигетерозиготный
СмыслЕсли диплоидные организмы несут две копии каждого гена, они могут быть идентичными аллелями, так называемыми гомозиготными.Но если диплоидные организмы несут две копии каждого гена, которые могут быть разными (доминантными и регрессивными) аллелями, можно сказать, что они гетерозиготные.
Результаты вОн приносит схожих людей, значит, он чист для черты и порождает правду. Например, RR, RRОн объединяет разнородных особей, что означает, что гетерозиготный особь редко бывает чистым и дает потомство с другим генотипом. Например, Rr
НесетГомозиготный имеет сходные аллели черты. Например, RR, рр.Гетерозиготный несет разнородный аллель, например, Rr.
Тип аллелейГомозиготный индивидуум может нести доминантные или рецессивные аллели, но не оба одновременно.Гетерозиготный индивидуум имеет оба, то есть один доминантный и один рецессивный аллели.
Тип произведенных гаметТолько один тип гамет производится.Два типа гамет производятся.

Определение гомозиготности

Homo означает «то же самое », а zygous означает « наличие зигот определенного типа », поэтому мы можем уточнить это, сказав, что «когда оба аллеля, присутствующие в гомологичных хромосомах для данного гена, одинаковы, они называются гомозиготными.

Гетерозиготные и гомозиготные в чем разница. Смотреть фото Гетерозиготные и гомозиготные в чем разница. Смотреть картинку Гетерозиготные и гомозиготные в чем разница. Картинка про Гетерозиготные и гомозиготные в чем разница. Фото Гетерозиготные и гомозиготные в чем разница

Говорят, что организм является гомозиготным в определенном локусе, когда он приносит две неразличимые (идентичные) копии гена, влияющие на признак, присутствующий на двух реципрокных гомологичных хромосомах. (например, генотип RR или rr, когда R и r относятся к различным возможным аллелям одного и того же гена). Такие клетки или такие организмы называются гомозиготами.

Определение гетерозиготных

Гетеро означает «другой», а зигоус означает « имеющий зиготы определенного вида ». Таким образом, мы можем объяснить это, сказав, что «когда оба аллеля, присутствующие на гомологичных хромосомах для данного гена, различны.

Гетерозиготные и гомозиготные в чем разница. Смотреть фото Гетерозиготные и гомозиготные в чем разница. Смотреть картинку Гетерозиготные и гомозиготные в чем разница. Картинка про Гетерозиготные и гомозиготные в чем разница. Фото Гетерозиготные и гомозиготные в чем разница

Например, одна хромосома в гомологичной паре содержит коричневые волосы (R), а другая хромосома содержит черные волосы (r). Таким образом, результирующий генотип Rr.
Схематическое изображение гомозиготных и гетерозиготных

Гетерозиготные и гомозиготные в чем разница. Смотреть фото Гетерозиготные и гомозиготные в чем разница. Смотреть картинку Гетерозиготные и гомозиготные в чем разница. Картинка про Гетерозиготные и гомозиготные в чем разница. Фото Гетерозиготные и гомозиготные в чем разница

Ключевые различия между гомозиготными и гетерозиготными

Вывод

Мы заключаем, что гомозиготный и гетерозиготный являются двумя генетическими терминами, используемыми при идентификации признаков, встречающихся в организме. Когда два организма размножаются, они производят признак, который является комбинацией либо серии доминантных, либо регрессивных аллелей. То, как эти аллели объединяются, идентифицирует их как гомозиготные или гетерозиготные.

Источник

Гомозиготность и гетерозиготность

Гомозиготность и гетерозиготность, доминантность и рецессивность.

Гомозиготность (от греч. «гомо» равный, «зигота» оплодотворенная яйцеклетка) диплоидный организм (или клетка), несущий идентичные аллели в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных. Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными.

Гомозиготность- это состояние наследственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Переход гена в гомозиготное состояние приводит к проявлению в структуре и функции организма (фенотипе) рецессивных аллелей, эффект которых при гетерозиготности подавляется доминантными аллелями. Тестом на гомозиготность служит отсутствие расщепления при определённых видах скрещивания. Гомозиготный организм образует по данному гену только один вид гамет.

Принципы гомозиготности, гетерозиготности и других основ генетики впервые сформулировал основоположник генетики аббат Грегор Мендель в виде трёх своих законах наследования.

Первый закон Менделя: «Потомство от скрещивания особей, гомозиготных по разным аллеям одного и того же гена, единообразно по фенотипу и гетерозиготно по генотипу».

Второй закон Менделя: «При скрещивании гетерозиготных форм в потомстве наблюдается закономерное расщеплении в соотношении 3:1 по фенотипу и 1:2:1 по генотипу».

Третий закон Менделя: «Аллели каждого гена наследуются независимо от комплекции животного.
С точки зрения современной генетики его гипотезы выглядят так:

2. Если организм содержит два различных аллеля данного признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого (рецессивного). (Принцип доминирования или единообразия потомков первого поколения). В виде примера возьмем моногибридное (только по признаку окраса) скрещивание у кокеров. Предположим, что оба родителя гомозиготны по окрасу, таким образом, черная собака будет иметь генотип, который мы для примера обозначим АА, а палевая аа. Обе особи будут продуцировать только один тип гамет: черная только А, а палевая только а. Независимо от того, сколько щенков родится в таком помете, все они будут черными, поскольку черный окрас доминирует. С другой стороны, все они будут носителями палевого гена, поскольку их генотип Аа. Для тех, кто не слишком разобрался, заметим, что рецессивный признак (в данном случае палевый окрас) проявляется только в гомозиготном состоянии!

3. Каждая половая клетка (гамета) получает по одному из каждой пары аллелей. (Принцип расщепления). Если мы скрестим потомков первого поколения или двух любых кокеров с генотипом Аа, в потомстве второго поколения будет наблюдаться расщепление: Аа + аа = АА, 2Аа, аа. Таким образом, расщепление по фенотипу будет выглядеть как 3:1, а по генотипу как 1:2:1. То есть при вязке двух черных гетерозиготных кокеров у нас может быть 1/4 вероятности рождения черных гомозиготных собак (АА), 2/4 вероятности рождения черных гетерозигот (Аа) и 1/4 вероятности рождения палевых (аа). В жизни все не так просто. Иногда от двух черных гетерозиготных кокеров может получиться б палевых щенков, а могут быть все черные. Мы просто просчитываем вероятность появления данного признака у щенков, а уж проявится ли он, зависит от того, какие аллели попали в оплодотворенные яйцеклетки.

4. При образовании гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары. (Принцип независимого распределения). Очень многие признаки наследуются независимо, например, если цвет глаз может зависеть от общего окраса собаки, то практически никак не связан с длиной ушей. Если взять дигибридное скрещивание (по двум разным признакам), то мы можем увидеть следующее соотношение: 9: 3: 3: 1

5. Каждый аллель передается из поколения в поколение как дискретная неизменяющаяся единица.

б. Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родительских особей.

Доминантность
Если для специфического гена две аллели, которые несет особь, будут одинаковы, то какая из них будет преобладать? Поскольку мутация аллелей часто приводит к потере функций (пустые аллели), особь, несущая только одну такую аллель, будет также иметь «нормальную» (дикий тип) аллель для того же самого гена; единственной нормальной копии часто будет достаточно, чтобы поддерживать нормальную функцию. Для аналогии, позвольте нам вообразить, что мы строим кирпичную стену, но один из наших двух обычных подрядчиков бастует. Пока оставшийся поставщик может снабжать нас достаточным количеством кирпичей, мы можем продолжать строить нашу стену. Генетики называют это явление, когда один из двух генов все еще может обеспечивать нормальную функцию, доминантностью. Нормальная аллель, как определяют, является доминантной по отношению к неправильной аллели. (Иначе можно сказать, что неправильная аллель является рецессивной по отношению к нормальной.)

Когда кто-то говорит о генетической ненормальности, «несомой» особью или линией, подразумевается, что имеется мутированный ген, который является рецессивным. Если мы не имеем сложного тестирования на непосредственное обнаружение этого гена, то мы не сможем визуально определить курьера (носителя) от особи с двумя нормальными копиями (аллелями) гена. К сожалению, испытывая недостаток в подобных тестированиях, курьер не будет своевременно обнаружен и неизбежно передаст аллель мутации части своего потомства. Каждая особь может быть подобно «укомплектована» и нести несколько таких темных тайн в своем генетическом багаже (генотип). Однако, все мы имеем тысячи различных генов для множества различных функций, и пока эти отклонения редки, вероятность того, что две неродственные особи, несущие одинаковую «ненормальность», встретятся для воспроизводства, очень низка.

Пронесем нашу аналогию с кирпичной стеной немного дальше. Что, если единственной поставки кирпичей будет недостаточно? Мы останемся со стеной, которая будет ниже (или короче) предполагаемой. Будет ли это иметь значение? Это зависит от того, что мы хотим сделать со «стеной» и, возможно, от генетических факторов. Результат, возможно, будет не одинаков для двух людей, которые строили эту стену. (Низкая стена может не пропустить паводок, но не наводнение!) Если есть возможность, что особь, несущая только одну копию неправильной аллели, проявит её неправильным фенотипом, то эта аллель должна быть расценена как доминантная. Её отказ всегда делать так определяется термином пенетрантность.

Доминантные мутации могут сохраняться в популяциях, если проблемы, которые они вызывают, являются тонкими и не всегда выраженными, или проявляются на зрелой стадии жизни, после того как затронутая особь участвовала в воспроизводстве.

Рецессивный ген (т.е. признак, им определяемый) может не проявляться у одного или многих поколений пока не встретятся два идентичных рецессивных гена от каждого из родителей (внезапное проявление такого признака у потомков не следует путать с мутацией).
Собаки, имеющие лишь один рецессивный ген — определитель какого-либо признака, не проявят это признак, так как действие рецессивного гена будет замаскировано проявлением влияния парного ему доминантного гена. Такие собаки (носители рецессивного гена) могут быть опасны для породы, если этот ген определяет появление нежелательного признака, потому что будет передавать его своим потомкам, а те далее и он таким образом сохранится в породе. Если случайно или необдуманно свести в пару двух носителей такого гена они дадут часть потомства с нежелательными признаками.

Присутствие доминантного гена всегда явно и внешне проявляется соответствующим признаком. Поэтому доминантные гены, несущие нежелательный признак, представляют для селекционера значительно меньшую опасность, чем рецессивные, так как их присутствие всегда проявляется, даже если доминантный ген «работает» без партнера (Аа).
Но, видимо, для того, чтобы усложнить дело, не все гены являются абсолютно доминантными или рецессивными. Другими словами, некоторые более доминантны, чем другие и наоборот. Например, некоторые факторы, определяющие окрас шерсти могут быть доминантными, но все же внешне не проявляться, если их не поддержат другие гены, иногда даже рецессивные.
Спаривания не всегда дают соотношения в точном соответствии с ожидаемыми средними результатами и для получения достоверного результата от данного спаривания нужно произвести большой помет или большое число потомков в нескольких пометах.
Некоторые внешние признаки могут быть «доминантными» в одних породах и «рецессивными» в других. Другие признаки могут быть обусловлены множественными генами или полугенами, не являющимися простыми доминантами или рецессивами по Менделю.

© 2009-2019 — питомниик чихуахуа «Олери-Юми»
Работает на ::FireColt
LJ-design 2010

Источник

Основные генетические понятия. Закономерности наследственности. Генетика человека.

Генетика и селекция

Генетика — наука, изучающая наследственность и изменчивость организмов.
Наследственность — способность организмов передавать из поколения в поколение свои признаки (особенности строения, функций, развития).
Изменчивость — способность организмов приобретать новые признаки. Наследственность и изменчивость — два противоположных, но взаимосвязанных свойства организма.

Наследственность

Основные понятия
Ген и аллели. Единицей наследственной информации является ген.
Ген (с точки зрения генетики) — участок хромосомы, определяющий развитие у организма одного или нескольких признаков.
Аллели — различные состояния одного и того же гена, располагающиеся в определённом локусе (участке) гомологичных хромосом и определяющие развитие одного какого-то признака. Гомологичные хромосомы имеются только в клетках, содержащих диплоидный набор хромосом. Их нет в половых клетках (гаметах) эукариот и у прокариот.

Признак (фен) — некоторое качество или свойство, по которому можно отличить один организм от другого.
Доминирование — явление преобладания у гибрида признака одного из родителей.
Доминантный признак — признак, проявляющийся в первом поколении гибридов.
Рецессивный признак — признак, внешне исчезающий в первом поколении гибридов.

Доминантные и рецессивные признаки у человека

ПризнакидоминантныерецессивныеКарликовостьНормальный ростПолидактилия (многопалость)НормаКурчавые волосыПрямые волосыНе рыжие волосыРыжие волосыРаннее облысениеНормаДлинные ресницыКороткие ресницыКрупные глазаМаленькие глазаКарие глазаГолубые или серые глазаБлизорукостьНормаСумеречное зрение (куриная слепота)НормаВеснушки на лицеОтсутствие веснушекНормальная свёртываемость кровиСлабая свёртываемость крови (гемофилия)Цветовое зрениеОтсутствие цветового зрения (дальтонизм)

Законы Г. Менделя

Первый закон Менделя. Г. Мендель скрестил растения гороха с жёлтыми семенами и растения гороха с зелёными семенами. И те и другие были чистыми линиями, то есть гомозиготами.

Первый закон Менделя — закон единообразия гибридов первого поколения (закон доминирования): при скрещивании чистых линий у всех гибридов первого поколения проявляется один признак (доминантный).
Второй закон Менделя. После этого Г. Мендель скрестил между собой гибридов первого поколения.

Второй закон Менделя — закон расщепления признаков: гибриды первого поколения при их скрещивании расщепляются в определённом числовом соотношении: особи с рецессивным проявлением признака составляют 1/4 часть от общего числа потомков.

Цитологические основы единообразия первого поколения и расщепления признаков во втором поколении состоят в расхождении гомологичных хромосом и образовании гаплоидных половых клеток в мейозе.
Гипотеза (закон) чистоты гамет гласит: 1) при образовании половых клеток в каждую гамету попадает только один аллель из аллельной пары, то есть гаметы генетически чисты; 2) у гибридного организма гены не гибридизуются (не смешиваются) и находятся в чистом аллельном состоянии.
Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.
Анализ потомства. Анализирующее скрещивание позволяет установить, гомозиготен или гетерозиготен организм по доминантному гену. Для этого скрещивают особь, генотип которой следует определить, с особью, гомозиготной по рецессивному гену. Часто скрещивают одного из родителей с одним из потомков. Такое скрещивание называется возвратным.
В случае гомозиготности доминантной особи расщепления не произойдёт:

В случае гетерозиготности доминантной особи произойдёт расщепление:

Третий закон Менделя. Г. Мендель провёл дигибридное скрещивание растений гороха с жёлтыми и гладкими семенами и растений гороха с зелёными и морщинистыми семенами (и те и другие – чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведёт себя так же, как при моногибридном скрещивании (расщепляется 3:1), то есть независимо от другой пары признаков.

Третий закон Менделя — закон независимого комбинирования (наследования) признаков: расщепление по каждому признаку идёт независимо от других признаков.

Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.

Сцепленное наследование. Нарушение сцепления

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.
Закономерности сцепленного наследования генов были изучены Т. Морганом и его учениками в начале 20-х гг. XX в. Объектом их исследований являлась плодовая мушка дрозофила (срок её жизни невелик, и за год можно получить несколько десятков поколений, её кариотип составляют всего четыре пары хромосом).
Закон Моргана: гены, локализованные в одной хромосоме, наследуются преимущественно вместе.
Сцепленные гены — гены, лежащие в одной хромосоме.
Группа сцепления — все гены одной хромосомы.
В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления — кроссинговер (перекрёст хромосом) — обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации. Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт — определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

Генетика пола

Аутосомы — хромосомы, одинаковые у обоих полов.
Половые хромосомы (гетерохромосомы) — хромосомы, по которым мужской и женский пол отличаются друг от друга.
В клетке человека содержится 46 хромосом, или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Существует 5 типов хромосомного определения пола.

Типы хромосомного определения пола

ТипПримеры
♀ XX, ♂ ХYХарактерен для млекопитающих (в том числе и для человека), червей, ракообразных, большинства насекомых (в том числе для дрозофил), большинства земноводных, некоторых рыб
♀ ХY, ♂ XXХарактерен для птиц, пресмыкающихся, некоторых земноводных и рыб, некоторых насекомых (чешуекрылые)
♀ XX, ♂ Х0Встречается у некоторых насекомых (прямокрылые); 0 обозначает отсутствие хромосом
♀ Х0, ♂ XXВстречается у некоторых насекомых (равнокрылые)
гапло-диплоидный тип (♀ 2n, ♂ n)Встречается, например, у пчёл и муравьёв: самцы развиваются из неоплодотворённых гаплоидных яйцеклеток (партеногенез), самки — из оплодотворённых диплоидных.

Наследование, сцепленное с полом — наследование признаков, гены которых находятся в Х- и Y-хромосомах. В половых хромосомах могут находиться гены, не имеющие отношения к развитию половых признаков.
При сочетании XY большинство генов, находящихся в X-хромосоме, не имеют аллельной пары в Y-хромосоме. Также гены, расположенные в Y-хромосоме, не имеют аллелей в X-хромосоме. Такие организмы называются гемизиготными. В этом случае проявляется рецессивный ген, имеющийся в генотипе в единственном числе. Так X-хромосома может содержать ген, вызывающий гемофилию (пониженную свёртываемость крови). Тогда все мужские особи, получившие эту хромосому, будут страдать этим заболеванием, так как Y-хромосома не содержит доминантного аллеля.

Генетика крови

По системе АВ0 у людей 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена IА, IВ, I0. Два первых кодоминантны по отношению друг к другу, и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии — 4.

I группа0I 0 I 0гомозигота
II группаАI А I Агомозигота
I А I 0гетерозигота
III группаВI В I Вгомозигота
I В I 0гетерозигота
IV группаАВI А I Вгетерозигота

У разных народов соотношение групп крови в популяции различно.

Распределение групп крови по системе АВ0 у разных народов,%

Народность0 (I)A (II)B (III)AB (IV)
Австралийцы54,340,33,81,6
Англичане43,544,78,63,2
Арабы443317,75,3
Венгры29,945,2177,9
Голландцы46,342,18,53,1
Индийцы30,224,537,28,1
Китайцы45,522,6256,9
Русские32,935,823,28,1
Японцы31,136,722,79,5

Распределение резус-фактора у разных народов,%

НародностьРезус-положительныеРезус-отрицательные
Австралийские аборигены1000
Американские индейцы90–982–10
Арабы7228
Баски6436
Китайцы98–1000–2
Мексиканцы1000
Норвежцы8515
Русские8614
Эскимосы99–1000–1
Японцы99–1000–1

Резус-фактор крови определяет ген R. R + дает информацию о выработке белка (резус-положительный белок), а ген R – не даёт. Первый ген доминирует над вторым. Если Rh + кровь перелить человеку с Rh – кровью, то у него образуются специфические агглютинины, и повторное введение такой крови вызовет агглютинацию. Когда у Rh – женщины развивается плод, унаследовавший у отца положительный резус, может возникнуть резус-конфликт. Первая беременность, как правило, заканчивается благополучно, а повторная — заболеванием ребёнка или мертворождением.

Взаимодействие генов

Генотип — это не просто механический набор генов. Это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки).
Взаимодействовать могут как аллельные гены, так и неаллельные.
Взаимодействие аллельных генов: полное доминирование, неполное доминирование, кодоминирование.
Полное доминирование — явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.
Неполное доминирование — явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.
Кодоминирование (независимое проявление) — явление, когда в формировании признака у гетерозиготного организма участвуют обе аллели. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и B, являются кодоминантными по отношению друг к другу, и оба доминантны по отношению к гену, определяющему группу крови 0.
Взаимодействие неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.
Кооперация — явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет своё собственное фенотипическое проявление, происходит формирование нового признака.
Комплементарность — явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.
Эпистаз — явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).
Полимерия — явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).
В противоположность полимерии наблюдается такое явление, как плейотропия — множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

Хромосомная теория наследственности

Основные положения хромосомной теории наследственности:

Нехромосомное наследование

Согласно хромосомной теории наследственности ведущую роль в наследственности играют ДНК хромосом. Однако ДНК содержатся также в митохондриях, хлоропластах и в цитоплазме. Нехромосомные ДНК называются плазмидами. Клетки не имеют специальных механизмов равномерного распределения плазмид в процессе деления, поэтому одна дочерняя клетка может получить одну генетическую информацию, а вторая — совершенно другую. Наследование генов, содержащихся в плазмидах, не подчиняется менделевским закономерностям наследования, а их роль в формировании генотипа ещё мало изучена.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *