Где начинается конвективная зона у звезд более массивных чем солнце
Конвективная зона
Зона конвекции — область Солнца (или более обще, звезды) в которой перенос энергии из внутренних районов во внешние происходит главным образом путём активного перемешивания вещества — конвекции.
Содержание
Расположение и строение
Выше зоны конвекции расположена фотосфера, ниже — зона лучистого переноса. Наглядным аналогом процессов, происходящих в конвективной зоне, является подогрев воды в сосуде. Пламя нагревает нижние слои воды, и они в результате теплового расширения вытесняются вверх другими, холодными и более тяжёлыми слоями. Аналогичный процесс происходит и в Солнце, где источником энергии служит солнечное ядро с происходящими в нем термоядерными реакциями.
Движение вещества в конвективной зоне происходит не хаотично, а в виде устойчивых ячеек циркуляции шестигранной формы — по оси ячейки вещество поднимается, а у периферии опускается. Кроме того, по вертикали конвекция разбивается на слои, толщина которых близка к толщине «однородной атмосферы», где плотность меняется в e = 2,7 раза. Поэтому размер ячеек меняется по мере движения к поверхности звезды. У основания конвективной зоны образуются гигантские ячейки размером около половины радиуса звезды, в промежуточных слоях их размер уменьшается, а в верхнем слое их размер составляет несколько сотен км. На поверхности Солнца видны следы всех слоёв ячеек, в виде гранул и более крупных структур (супергрануляция).
Скорость конвекции зависит от глубины. У основания конвективной зоны она мала (десятки м/c), под фотосферой она достигает значений 1-2 км/с.
Физические процессы в конвективной зоне
Движение вещества в конвективной зоне тесно связано с процессами ионизации и рекомбинации атомов водорода и гелия, и во многом обусловлено ими.
Конвективные зоны звёзд различной массы
Обычная конвективная зона
Солнце, а также звёзды главной последовательности, имеющие среднюю массу и близкий спектральный класс, обладают конвективной зоной, которая занимает приблизительно треть объёма звезды. Когда горячая плазма поднимается к верхней границе конвективной зоны, она охлаждается за счёт излучения энергии в фотосферу, остывает и погружается вглубь, где нагревается излучением лучистой зоны, после чего цикл повторяется. Поскольку зона ядерных реакций отделена от зоны перемешивания вещества зоной лучистого переноса, то гелий практически не выносится в поверхностные слои Солнца, а накапливается в его ядре.
Конвективная зона на Солнце и сходных звёздах представляет собой зону частично ионизованных водорода и гелия. Конвективная зона простирается до глубины, где водород и гелий полностью ионизованы. Чем ниже температура звезды, тем толще её конвективная зона, у холодных красных звёзд её толщина достигает половины радиуса. Наоборот, у более горячих звёзд спектрального класса А водород заметно ионизован уже на поверхости, поэтому уже на небольшой глубине и водород и гелий полностью ионизованы, следовательно толщина конвективной зоны у таких звёзд мала.
Ядерная конвективная зона
У массивных звёзд ранних спектральных классов (O и B) синтез гелия осуществляется не протон-протонным, а азотно-углеродным циклом. Скорость этой реакции очень сильно зависит от температуры, поэтому температура внутри ядра по мере движения к центру звезды очень быстро возрастает. Большой температурный градиент внутри ядра создаёт условия для формирования ещё одной, внутриядерной зоны конвекции, которая лежит под зоной лучистого переноса, и в которой происходит активное перемешивание массы вещества, участвующего в ядерных реакциях. Это приводит к равномерному выгоранию водорода по всему ядру, что существенно влияет на ход эволюции таких звёзд.
Звёзды без лучистой зоны
У звёзд главной последовательности, имеющих малую массу (менее 0,26 массы Солнца) — красных карликов, зона конвекции занимает весь объём звезды. Лучистая зона отсутствует и у молодых звёзд малой массы (до трёх масс Солнца), ещё не завершивших процесс гравитационного сжатия и находящихся на подходе к главной последовательности. У красных гигантов зона конвекции также простирается непосредственно до ядра.
Тест по астрономии: Внутреннее строение звёзд (Чаругин, 10-11 класс)
ТЕСТ ПО АСТРОНОМИИ: ВНУТРЕННЕЕ СТРОЕНИЕ ЗВЁЗД (ЧАРУГИН, 10-11 КЛАСС)
Просмотр содержимого документа
«Тест по астрономии: Внутреннее строение звёзд (Чаругин, 10-11 класс)»
ТЕСТ ПО АСТРОНОМИИ: ВНУТРЕННЕЕ СТРОЕНИЕ ЗВЁЗД (ЧАРУГИН, 10-11 КЛАСС) | |
1. Выберите верное утверждение. А. Чем больше масса звезды, тем ниже температура её недров и быстрее темп выделения энергии Б. Чем больше масса звезды, тем выше температура её недров и быстрее темп выделения энергии В. Чем больше масса звезды, тем выше температура её недров и медленнее темп выделения энергии | 6. От чего главным образом зависит эффективность термоядерных реакций звёзд? А. От температуры Б. От продолжительности синтеза В. От происхождения звёзд |
2. Где начинается конвективная зона у звёзд, более массивных, чем Солнце? А. С поверхности звезды Б. Из центра звезды В. С нижних слоёв поверхности звезды | 7. За счёт синтеза каких элементов происходят термоядерные реакции звёзд? А. Гелия и водорода Б. Гелия и углерода В. Водорода и углерода |
3. Какой отличительной особенностью обладают красные гиганты и сверхгиганты? А. Отсутствие ядерных реакций в самом центре звезды, несмотря на высокие температуры Б. Наличие ядерных реакций в самом центре звезды, несмотря на низкие температуры В. Наличие ядерных реакций в нижних слоях поверхности звезды | 8. При какой температуре темп энерговыделения настолько большой, что излучение не успевает уносить энергию из центральной части звезды? А. 15×10⁹ Б. 16×10¹⁵ В. 16×10⁹ |
4. Выберите верное утверждение о сверхгигантах и красных гигантах. А. Во внешних слоях ядра из гелия образуется водород, глубже из водорода образуется углерод, затем из углерода — кислород Б. Во внешних слоях ядра из водорода образуется углерод, глубже внешних слоёв ядра из углерода образуется гелий, затем из гелия— кислород В. Во внешних слоях ядра из водорода образуется гелий, глубже внешних слоёв ядра из гелия образуется углерод, затем из углерода — кислород | 9. Какой процесс происходит в звезде, когда темп энерговыделения настолько большой, что излучение не успевает уносить энергию из центральной части звезды? А. Конвекционный перенос Б. Конвективный перенос В. Термический перенос |
5. Что образуется при термоядерных реакциях у очень массивных сверхгигантов и красных гигантов? А. уран Б. железо В. кюрий | 10. Где происходят ядерные реакции в красных гигантах и сверхгигантах? А. В центре ядра Б. В тонких слоях вокруг плотного центрального ядра В. В глубоких слоях поверхности звезды |
Ответы 1. Выберите верное утверждение. Чем больше масса звезды, тем выше температура её недров и быстрее темп выделения энергии
2. Где начинается конвективная зона у звёзд, более массивных, чем Солнце? Из центра звезды
3. Какой отличительной особенностью обладают красные гиганты и сверхгиганты? Отсутствие ядерных реакций в самом центре звезды, несмотря на высокие температуры
4. Выберите верное утверждение о сверхгигантах и красных гигантах. Во внешних слоях ядра из водорода образуется гелий, глубже внешних слоёв ядра из гелия образуется углерод, затем из углерода — кислород
5. Что образуется при термоядерных реакциях у очень массивных сверхгигантов и красных гигантов? железо
6. От чего главным образом зависит эффективность термоядерных реакций звёзд? От температуры
7. За счёт синтеза каких элементов происходят термоядерные реакции звёзд? Гелия и водорода
8. При какой температуре темп энерговыделения настолько большой, что излучение не успевает уносить энергию из центральной части звезды? 16×10⁹
9. Какой процесс происходит в звезде, когда темп энерговыделения настолько большой, что излучение не успевает уносить энергию из центральной части звезды? Конвективный перенос
10. Где происходят ядерные реакции в красных гигантах и сверхгигантах? В тонких слоях вокруг плотного центрального ядра
Как рождается энергия Солнца?
Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.
Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?
Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.
Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.
Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.
Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.
Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.
Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.
Зона лучистого переноса
Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Температура этого слоя пониже, примерно от 7 миллионов градусов ближе к ядру до 2 миллионов градусов на границе конвективной зоны. Плотность тоже падает в сто раз с 20 г/см³ ближе к ядру до 0,2 г/см³ у верхней границы.
Конвективная зона
Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.
Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.
На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.
Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.
Фотосфера
Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.
Толщина фотосферы — сотни километров, именно в этой области Солнце становится непрозрачным для видимого света. Причина этого в уменьшении количества отрицательно заряженных ионов водорода (H-), которые с легкостью поглощают видимый свет. И наоборот, видимый свет, который мы видим, рождается в процессе реакции электронов с атомами водорода с образованием ионов H-.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.
Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).
Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.
Лекция по Астрономии на тему: «Строение звезд»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
УЧЕБНАЯ ДИСЦИПЛИНА: АСТРОНОМИЯ
Тема: Строение звезд
Задание №1
Изучить лекционный материал по теме
Заполнить таблицу №1 Характеристика звезд.
Из чего состоят звезды?
Звезда — массивный газовый шар, излучающий свет и удерживаемый в состоянии равновесия силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза. Ближайшей к Земле звездой является Солнце. Ближайшей к Солнцу звездой является Проксима Центавра. Она расположена в 4,2 светового года.
О составе звезд человечество узнало в последнюю очередь. Происхождение их угадал философ Иммануил Кант еще в XVIII веке. Другие параметры, вроде цвета или светимости, можно оценить без особых инструментов — а вот материал, из которого состоят звезды, долгое время терзал воображение ученых.
1. Метод определения
Определять состав светил астрономы научились только в середине XIX века. Именно тогда в арсенале исследователей космоса появился спектральный анализ.
Метод основан на свойстве атомов различных элементов излучать и поглощать свет на строго определенных резонансных частотах. Соответственно на спектре видны темные и светлые полосы, расположенные на местах, характерных для данного вещества. Разные источники света можно отличить по рисунку из линий поглощения и излучения.
Спектральный анализ успешно применяется для определения состава звезд. Его данные помогают исследователям понять очень многие процессы, происходящие внутри светил и недоступные непосредственному наблюдению.
Химический состав звезд
Вы когда-нибудь задумывались, из чего состоят звезды? Вы были бы удивлены, узнав их состав — это те самые материалы, из которых сделана вся остальная Вселенная:
Вот и все, за исключением некоторых различий в определенных материалах, звезды созданы в значительной степени из одинакового вещества.
Звезды образовывались со времен зарождения Вселенной. Фактически астрономами рассчитано, что каждый год в галактике Млечный Путь формируется 5 новых звезд. Некоторые из них имеют больше тяжелых элементов от предыдущих звезд – металлически богатые, а некоторые содержат меньше – металлически бедные. Но даже так, соотношение элементов остается в равной степени.
Солнце — пример богатой на металл звезды, имеет более высокое количество тяжелых элементов внутри, нежели в среднем среди таких же представителей. И все же, наше светило обладает схожим соотношением долей элементов: 75% водорода, 24% гелия, а остальные — кислород, углерод, азот.
Преобразование водорода в гелий внутри ядра Солнца происходит уже 4,5 миллиарда лет
Химический состав звезд
На 10 тысяч атомов водорода в среднем приходится порядка тысячи атомов гелия, всего лишь 5 атомов кислорода и меньше 1 атома любых других элементов.
Не редко встречаются звезды, которые в своем химическом составе имеют повышенное содержание определенного элемента. Ученым известны те звезды, которые в своем химическом составе имеют повышенное количество кремния (так называемые кремниевые звезды), железные звезды (звезды, с повышенным содержанием железа ). Также существует множество звезд с повышенным содержанием марганца, углерода и т.д.
В космосе находится большое количество звезд, имеющих аномальный состав элементов. В некоторых молодых звездах, относящихся к типу красных гигантов, было найдено повышенное содержание различных тяжелых элементов.
Рис. Красный гигант
По мере старения звезды содержание элементов уменьшается у тех звезд, которые имеют атомы большей массы, нежели масса атома гелия.
Также вариации химического состава звезд зависят и от месторасположения звезд в Галактике. В старых звездах, которые находятся в сферической части галактики можно обнаружить мало атомов тяжелых элементов. Абсолютно противоположную ситуацию можно наблюдать в части, которая создает периферические своеобразные спиральные «рукава» галактики можно обнаружить достаточно большое количество звезд, в состав которых входит множество тяжелых элементов. Как правило, именно в таких частях и появляются новые звезды.
Исходя из этого, ученые пришли к выводу, что наличие тяжелых элементов приводит к своеобразной химической эволюции, которая характеризует начало жизни звезд.
Старение звезды и изменение состава
Такой процесс называется еще «горением» водорода: в Солнце «сгорает» до 4 миллионов тонн водорода ежесекундно.
Изменение состава на примере Солнца
Количество гелия в ядре Солнца будет увеличиваться; соответственно, будет расти объем ядра звезды. Из-за этого увеличится площадь термоядерной реакции, а вместе с ней — интенсивность свечения и температура Солнца. Через 1 миллиард лет (в возрасте 5,6 млрд лет) энергия звезды вырастет на 10%. В возрасте 8 миллиардов лет (через 3 млрд лет от сегодняшнего дня) солнечное излучение составит 140% от современного.
Условия на Земле к тому времени поменяются настолько, что она в точности будет напоминать Венеру.
Так наше Солнце превратится в красного гиганта. Полностью завершится развитие светила тогда, когда оболочка звезды окончательно истощится, и останется только плотное, горячее и маленькое ядро — белый карлик. Оно медленно будет остывать миллиардами лет.
Изменение состава звезд-гигантов
Хотя углерод и кислород существуют в звезде одновременно, во время реакций синтеза они создают вещества, распределяющиеся на принципиально разных уровнях звезды.
Структура звезды
В общем случае у звезды, находящейся на главной последовательности, можно выделить три внутренние зоны:
Ядро — это центральная область звезды, в которой идут ядерные реакции.
Конвективная зона — зона, в которой перенос энергии происходит за счёт конвекции. Для звёзд с массой менее 0,5 M ☉ она занимает всё пространство от поверхности ядра до поверхности фотосферы. Для звёзд с массой, сравнимой с солнечной, конвективная часть находится на самом верху, над лучистой зоной. А для массивных звёзд она находится внутри, под лучистой зоной.
Лучистая зона — зона, в которой перенос энергии происходит за счёт излучения фотонов. Для массивных звёзд эта зона расположена между ядром и конвективной зоной, у маломассивных она отсутствует, а у звёзд больше массы Солнца находится у поверхности.
На более поздних стадиях добавляются дополнительные слои, в которых идут ядерные реакции с элементами, отличными от водорода. И чем больше масса, тем больше таких слоев. У звёзд с массой, на 1—2 порядка превышающей Мʘ, таких слоёв может быть до 6, где в верхнем, первом слое всё ещё горит водород, а в нижнем идут реакции превращения углерода в более тяжёлые элементы, вплоть до железа. В таком случае в недрах звезды расположено инертное, в плане ядерных реакций, железное ядро.
Над поверхностью звезды находится атмосфера, как правило, состоящая из трёх частей: фотосферы, хромосферы и короны.
Фотосфера — самая глубокая часть атмосферы, в её нижних слоях формируется непрерывный спектр. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.
Хромосфер а (греч. «сфера света») названа так за свою красновато-фиолетовую окраску. Она видна вовремя полных солнечных затмений как клочковатое яркое кольцо вокруг чёрного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы.
В отличие от хромосферы и фотосферы самая внешняя часть атмосферы Солнца – корона – обладает огромной протяжённостью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам. Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере.
По мнению американского астронома, выдающегося популяризатора науки Карла Сагана, все мы и окружающие нас предметы и объекты (люди, планета Земля и остальные объекты Космоса) состоим из вещества, образовавшегося в недрах звёзд, т.е. состоим из элементов, которые образовались в звездах в процессе ядерных реакций и при взрывах сверхновых звезд.
Но, возможно, мы сделаны не только из вещества, образованного в звездах, но и пыли, выбрасываемой квазарами.