Гармоника что это в электротехнике
Коэффициент мощности и гармоники в электросети
Контроллер компенсаторной установки для увеличения cos φ
В прошлой статье я рассказал при исследование качества электроэнергии при помощи анализатора HIOKI. Там я обещал продолжить рассказ и поделиться своими знаниями по таким понятиям, как коэффициент мощности (известный в народе как cos φ) и гармоники питающего напряжения.
Кроме того, расскажу, что такое PF, DPF, и докажу, что косинус и синус – две большие разницы! 🙂
Для примера разберём, как обстоят дела с косинусом и гармониками на предприятии, которое мы обследовали совместно с “ИК Энергопартнер”.
Косинус угла в электротехнике
Кто хочет, почитайте про cos φ в Википедии, а я расскажу своими словами.
Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением. Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360.
На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:
Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:
Формула коэффициента мощности через активную и реактивную мощности
На самом деле, всё не так просто, подробности ниже.
Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:
В видео подробно и доступно изложена вся теория по теме.
Размерности. Что в чём измеряется
Активная мощность Р ⇒ Вт (то, что измеряет домашний счетчик),
Реактивная мощность Q ⇒ ВАР (Вольт · Ампер Реактивный),
Полная мощность S ⇒ ВА (Вольт · Ампер).
Кстати, в стабилизаторах и генераторах мощность указана в ВА. Так больше. Маркетологи знают лучше.
Также маркетологи знают, что на потребителях (например, на двигателях) мощность лучше указывать в Вт. Так меньше.
Минусы и плюсы наличия реактивной составляющей
При питании нагрузки, имеющей только активный характер, сдвиг фаз между током и напряжений равен нулю. Этот случай можно назвать идеальным, при нем можно питающие сети используются полностью, поскольку нет потерь на бесполезную реактивную составляющую.
Реактивная составляющая не так бесполезна. Она формирует электромагнитное поле, нужное для адекватной работы реактивной нагрузки.
В реальной жизни нагрузка, как правило, имеет индуктивный характер (ток отстает от напряжения), и является активно-реактивной. Поэтому всегда, когда говорят о сдвиге фаз и о косинусе, имеют ввиду индуктивную нагрузку.
Основными источниками реактивной составляющей электроэнергии являются трансформаторы и асинхронные электродвигатели.
Чисто реактивная нагрузка бывает только в учебнике. Реально за счет потерь всегда присутствует и активная составляющая тоже.
Реактивная составляющая мощности питания является негативным фактором, поскольку:
По приведенным причинам необходимо понижать долю реактивной мощности в сети (повышать косинус) – это выгодно и энергоснабжающим организациям, и потребителям с распределенными сетями.
Пример: Для передачи определенной мощности нужен ток 100 А при cos φ = 1. Однако, при cos φ = 0,6 для обеспечения той же мощности нужно будет передать ток 166 А! Соответственно, нужно думать о повышении мощности питающей сети и увеличении сечения проводов…
Реактивная мощность – это часть мощности источника питания, эта мощность была накоплена в магнитном поле, а затем возвращена обратно источнику.
Как компенсируют реактивную составляющую мощности?
Для понижения (компенсации) индуктивного характера реактивной составляющей используют введение емкостной составляющей в нагрузку, которая имеет положительный сдвиг фаз напряжения и тока (ток опережает напряжение). Реализуется это путем подключения параллельно нагрузке конденсаторов необходимой емкости. В результате происходит компенсация, и нагрузка со стороны питающей сети становится активной, с малой долей реактивной составляющей.
Компенсаторная установка на контакторах
Важно, чтобы не происходило перекомпенсации. То есть, даже после компенсации косинус не должен быть выше 0,98 – 0,99, и характер мощности всё равно должен оставаться индуктивным. Ведь компенсация имеет ступенчатый характер (контакторами переключаются трехфазные конденсаторы).
Конденсатор компенсатора реактивной мощности
Однако, для конечного потребителя компенсация реактивной мощности не имеет особого смысла. Польза в её компенсации есть только там, где имеются длинные сети передачи, которые “забиваются” реактивной мощностью, что в итоге снижает их пропускную способность.
Поэтому компенсация реактивной мощности относится к вопросу энергосбережения – она позволяет экономить расход топлива на электростанциях, и выработку бесполезной реактивной энергии, которая в конечном счете преобразуется в тепловую энергию и выбрасывается в атмосферу.
На предприятиях учитывается и активная, и реактивная потребляемые мощности, и при составлении договора оговаривается минимальное значение коэффициента мощности, которое нужно обеспечить. Если косинус упал – включается повышающий коэффициент при оплате.
Отрицательный косинус
Из школьного курса геометрии известно, что cos (φ) = cos (-φ), то есть косинус любого угла будет положительной величиной. Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!
В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ Коэффициент реактивной мощности Тангенс φ
Часто более удобным является коэффициент реактивной мощности tg φ, который показывает отношение реактивной мощности к активной. Понятно, что при tg φ = 0 достигается идеал cos φ = 1.
Гармоники питающего напряжения
Кроме образования реактивной мощности, на промышленных предприятиях существует такой негативный фактор, как выработка гармоник напряжения питающей сети.
Гармоники – это та часть спектра питающего напряжения, которая отличается частоты промышленной сети 50 Гц. Как правило, гармоники образуются на частотах, кратных основной. Таким образом, 1-я (основная) гармоника имеет частоту 50 Гц, 2-я – 100, 3-я – 150, и так далее.
Для измерения гармоник напряжения существует формула:
Гармоники напряжения – формула расчета
Однако, эта формула не удобна на практике, поскольку не дает представления об уровне каждой гармонике в отдельности. Поэтому для практических целей используют формулу:
Коэффициент каждой гармоники напряжения
Таким образом, при измерении мы получим детальное распределение гармоник в спектре питающего напряжения, что позволит провести детальный анализ полученной информации и сделать правильные выводы.
Есть ещё гармоники тока, но там всё гораздо хуже…
На основе увеличения гармоник тока построен прибор для обмана счетчика. Кстати, там Автор прибора довольно убедительно доказал пользу своего изобретения)
PF или DPF?
Здесь надо сделать оговорку. Всё, что я говорил выше про косинус – относится к линейной нагрузке. Это означает, что напряжение и ток, хоть и гуляют по фазе, имеют форму синуса.
Но в реальном мире вся нагрузка не только не активная, но и не линейная. Значит, ток через неё имеет хоть и периодическую, но далеко не синусоидальную форму. Искаженная синусоида означает, что кроме первой гармоники имеются и другие, вплоть до бесконечности.
Вот как обстоят иногда дела:
Формы напряжения и тока при нелинейной нагрузке
Гармоники напряжения, тока и мощности
Обычно, когда нагрузка симметричная (трехфазные потребители), за счёт принципов работы все гармоники, кратные 2 и 3, почти отсутствуют. В итоге остаются в основном 5, 7, 11, 13 гармоники, имеющие частоты соответственно частоты 250, 350, 550, 650 Гц.
Поэтому надо понимать, что та теория, что я расписал выше – для идеальных условий (без нелинейных искажений), которых в реале не бывает. Либо, если пренебречь высшими гармониками тока, и взять только первую (50 Гц), что обычно и происходит в жизни.
И если подходить к терминологии строго, то cos φ и PF (Power Factor) – это не одно и то же. PF учитывает также все гармоники напряжения и тока. И с учетом нелинейности реальный PF будет меньше.
Для учета коэффициента мощности в приборе HIOKI есть параметр DPF (Displacement Power Factor, смещённый коэффициент мощности), который учитывает только первую гармонику и равен cos φ.
Коэффициенты мощности полный PF и смещённый DPF (для чистого синуса)
В итоге можно сказать, что справедливо выражение:
cos φ = DPF ≤ PF
Измерения на предприятии
При индуктивном характере нагрузки, который наблюдается на практике в большинстве случаев, ток отстает от напряжения (отрицательный сдвиг фаз), что видно на экране прибора HIOKI 3197 (табличные данные) при проведении измерений:
В данном случае видно, что ток отстает от напряжения примерно на 26°.
Из вышеприведенного измерения видно, что при угле отставания тока (сдвиге фаз) 26° cos φ = 0,898. Данный расчет подтверждается измеренным значением.
Измерение проводилось в течение около двух часов, за это время оборудование (нагрузка) циклически включалось и выключалось. За всё время измерения коэффициент нелинейных искажений напряжения THD не превысил 1,3% по каждой из фаз.
Результаты измерений приведены ниже:
Измеренные гармоники напряжения, тока и мощности
Режим мультиметра – на экране разные параметры
Для проверки проведём расчет по выше приведенной формуле для самых интенсивных гармоник (5, 7, 11):
Расчет гармоник напряжения
Как видно, остальные гармоники имеют пренебрежимо малый вес.
Временной график THD:
График THD (коэфта нелинейных искажений)
Временной график cosϕ:
Анализ полученных результатов обследования
На предприятии нужно было выбрать компенсирующую установку для увеличения коэффициента мощности. Но перед её покупкой было решено обратить внимание на гармоники.
Были реальные случаи, когда из-за высокого уровня гармоник напряжения взрывались и загорались конденсаторные установки
В ГОСТ 13109-97 указан допустимый уровень гармонических искажений по напряжению, равный 8%. По проведенным измерениям, этот уровень не превышен. Однако, при увеличении мощности в 5 раз можно ожидать увеличение процента гармоник (THD) в то же количество раз. Следовательно, возможно увеличение коэффициента гармоник с 2,3 % до 11,5 %.
Однако, по рекомендациям производителей для безопасной эксплуатации батарей конденсаторов установок стандартного исполнения уровень THD не должен превышать 2 %. При этом уровень гармоник тока не учитывается и ГОСТом не регламентируется.
Следовательно, необходимо применять совместно с конденсаторными установками фильтры высших частот (фильтрокомпенсирующие устройства).
Рекомендации по уменьшению гармонических составляющих питающего напряжения
Для уменьшения гармоник напряжение рекомендуется сделать следующее:
Для выполнения приведенных рекомендаций желательно обратиться к инструкциям производителей и специалистам.
Креме того, рекомендуется проверить состояние питающих проводов, кабелей, клемм, переходных сопротивлений силовых соединений фазных и нейтральных проводов, качество соединений заземления корпусов электроприборов и т.д. В результате обследования выявлены преобразователи с отключенным заземлением.
Рекомендации по выбору компенсирующих устройств реактивной мощности
Мощность компенсирующего устройства выбирается исходя из мощности нагрузки, а также существующего и желаемого коэффициентов мощности.
Для расчета параметров можно воспользоваться следующей методикой.
Определить из таблицы коэффициент К, который считается по формулам на основе углов фаз некомпенсированного и компенсированного питания:
Таблица для определения коэффициента выбора конденсаторов
Например, текущий cosϕ = 0,7, желаемый cosϕ = 0,96. Тогда К = 0,73.
Как я уже говорил, не рекомендуется компенсировать реактивную мощность полностью (до cosϕ = 1), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов)
Этот тот самый случай, когда к идеалу стремиться не нужно)
Далее, необходимую емкостную мощность конденсаторных батарей определяют по формуле: Qc = КP (ВАр).
Например, в нашем случае, при мощности 1000 кВт полная мощность конденсаторной батареи будет 730 кВАр.
При выборе конденсаторной батареи она должна обладать следующими параметрами (не хуже):
(рекомендации даны поставщиком КУ)
На этом всё. Если есть желание что-то добавить, или поправить меня – как всегда, рад вашим комментариям!
Гармоники кратные 3-м
Из школьного курса физики мы привыкли считать, что в любой электрической сети, протекает переменный ток частотой 50 Гц синусоидальной формы, однако в реальных электросетях форма электрического сигнала сильно искажена. Благодаря наличию нелинейных искажений форма питающего напряжения далека от синусоидальных сигналов, изображенных на страницах учебника. Вызываемые гармониками искажения напряжения пагубно влияют на потребителей электроэнергии.
Гармониками электрического сигнала называются колебания с частотами кратными основной, разумеется, общий ряд будет состоять из четных и нечетных гармоник, в равной степени опасных для электросети. Гармонические токи ведут к нежелательным последствиям:
Гармоническое искажение синусоидального сигнала перегружает электрическую сеть и ведет к необоснованным потерям электроэнергии.
Причины возникновения гармоник
Наличие гармоник характерно для всех электрических сетей. Появление четных гармоник чаще встречается в несимметричных системах, в то время как нечетные гармоники присутствуют во всех электросетях, как бытового, так и производственного назначения. Причины несинусоидальных токов таятся во влиянии нелинейных нагрузок, к которым можно отнести:
Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°, как следствие суммарный ток нейтрального провода имеет нулевое значение, Это условие распространяется на основную частоту, но в случае несинусоидальных фазных напряжений, когда электрический сигнал содержит гармоники ситуация может меняться. Гармоники, вектор вращения тока, которых совпадает по направлению с основной, носят название гармоник прямой последовательности, при вращении вектора в противоположном направлении – обратной. Кроме того существуют гармоники нулевой последовательности, сдвинутые в трехфазных цепях относительно друг друга на 360°, такими являются нечетные гармоники кратные трем (3-я, 9-я, 15-я, 21-я …).
Особенности гармоник кратных третьей
Как упоминалось выше, в сбалансированных трехфазных цепях ток в нейтрали отсутствует или обусловлен асимметрией линейных нагрузок, в случае гармоник он существенно возрастает. Для третьей гармоники, период которой втрое меньше основной, максимальные значения амплитуд совпадают по фазе и их значения складываются в нулевом проводе. К полученной сумме добавляются токи гармоник приведенного выше ряда, таким образом, суммарный ток всех гармоник в нейтральном проводе возрастает и может превышать фазные значения в полтора-два раза, например при фазном токе в 10 А, его значение в нулевом проводе может составлять 15 А и выше.
По существовавшим ранее стандартам четырехпроводные кабели изготавливались с нулевым проводом сечением вполовину меньшим, нежели фазных проводов. Это несет в себе опасность чрезмерного перегрева и возгорания кабеля. Отражаются нечетные гармоники, кратные третьей и на работе трехфазных трансформаторов.
Смотрите также другие статьи :
Любые электроприборы и оборудование разрабатываются для работы в определенных условиях. Все составные элементы предусматривают характеристики, способные производить оптимальную полезность и отдачу при определенных параметрах поступающего тока.
Для безопасной эксплуатации электроприборов и электрической сети в целом, а также профилактики пожаров следует разобраться, почему последние происходят.
Что такое гармоники в электрических сетях
Определение гармоник
График сигнала, который изменяется по синусоидальному закону, имеет вид:
Но это значительно отличается от реальной формы напряжения в электрической сети:
Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:
Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:
Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.
Источники помех
К источникам помех можно отнести целый ряд оборудования, начиная от бытовых приборов, заканчивая мощными промышленными электрическими машинами. Для начала давайте кратко рассмотрим причины их возникновения.
Гармоники в электрической сети переменного тока возникают из-за особенностей электрооборудования, например из-за нелинейности их характеристик, или характера потребления тока.
Например, в трёхфазных сетях в магнитопроводах трансформаторов длины магнитных путей средних и крайних фаз различаются почти в 2 раза, поэтому и токи их намагничивания различаются до полутора раз. Отсюда возникают гармоники в трёхфазных сетях.
Другой источник помех в электротехнике — это электродвигатели, как трёхфазные синхронные и асинхронные, так и однофазные, в том числе и универсальные коллекторные двигатели. Последний тип двигателей используется в большей части бытовой техники, например:
В результате работы импульсных блоков питания возникают высокочастотные гармоники (помехи) в электрической сети. Чтобы понять как они образуются, нужно иметь сведения об их внутреннем устройстве. Это связано с тем, что ток первичной обмотки ИБП отличается от непрерывного, он протекает только тогда, когда открыт силовой полупроводниковый ключ. А последний открывается и закрывается с частотой выше 20 кГц.
Интересно: Рабочая частота некоторых современных импульсных блоков питания достигает 150 кГц.
Для уменьшения этих гармоник используют фильтры электромагнитных помех, например, синфазный дроссель и конденсаторы. Для улучшения графика потребления тока относительно питающего однофазного напряжения используют активные корректоры коэффициента мощности (рус. ККМ, англ. PFC).
Такие блоки питания установлены в:
Также к этим источникам питания можно отнести и преобразователи частоты.
Последствия гармонических помех
Наличие гармоник в электрической сети переменного тока вызывает определенные проблемы. Среди них – повышенный нагрев электродвигателей и питающих проводов. Последствия влияния гармоник – это вибрация двигателей. Дальнейшие последствия могут быть различными – начиная от ускоренного износа подшипников ротора двигателя, заканчивая пробоем на корпус обмоток от повышенного нагрева.
В электрике встречаются ложные срабатывания коммутационной и защитной аппаратуры – автоматических выключателей, контакторов и магнитных пускателей. В звуковой аппаратуре и технике для связи из-за гармоник возникают помехи. С ними борются аналогично – установкой фильтров электромагнитных помех.
На видео ниже рассказывается, что такое гармоники и интергармоники в электросети:
В заключение хотелось бы отметить, что гармоники в электрических сетях в принципе не несут никакой пользы. Они лишь вызывают неисправности, ложные срабатывания коммутационной аппаратуры и прочие проявления нестабильности в работе. Это может нести не только неудобства в эксплуатации, но и экономические проблемы, убытки и аварийные ситуации, которые могут быть опасны для жизни.
Материалы по теме:
Гармоники обычно классифицируются по двум различным критериям: тип сигнала (напряжение или ток) и порядок гармоники (четный, нечетный, тройной или нечетный, нечетный); в трехфазной системе их можно дополнительно классифицировать в соответствии с их последовательностью фаз (положительная, отрицательная, нулевая).
СОДЕРЖАНИЕ
Гармоники тока
Гармоники тока вызваны нелинейными нагрузками. Когда к системе подключена нелинейная нагрузка, такая как выпрямитель, она потребляет ток, который не обязательно является синусоидальным. Искажение формы сигнала тока может быть довольно сложным в зависимости от типа нагрузки и ее взаимодействия с другими компонентами системы. Независимо от того, насколько сложной становится форма волны тока, преобразование ряда Фурье позволяет разбить сложную форму волны на серию простых синусоид, которые начинаются на основной частоте энергосистемы и возникают на целых кратных основной частоте.
В энергосистемах гармоники определяются как положительные целые числа, кратные основной частоте. Таким образом, третья гармоника является третьей кратной основной частоты.
Гармоники в энергосистемах генерируются нелинейными нагрузками. Полупроводниковые устройства, такие как транзисторы, IGBT, МОП-транзисторы, диоды и т. Д., Являются нелинейными нагрузками. Другие примеры нелинейных нагрузок включают обычное офисное оборудование, такое как компьютеры и принтеры, флуоресцентное освещение, зарядные устройства для аккумуляторов, а также приводы с регулируемой скоростью. Электродвигатели обычно не вносят значительного вклада в генерацию гармоник. Однако как двигатели, так и трансформаторы будут создавать гармоники, когда они перенапряжены или насыщены.
Нелинейные токи нагрузки создают искажение чистой синусоидальной формы волны напряжения, подаваемой от электросети, и это может привести к резонансу. Четные гармоники обычно не существуют в энергосистеме из-за симметрии между положительной и отрицательной половинами цикла. Кроме того, если формы сигналов трех фаз симметричны, гармонические составляющие, кратные трем, подавляются за счет треугольного (Δ) соединения трансформаторов и двигателей, как описано ниже.
Если мы сосредоточимся, например, только на третьей гармонике, мы сможем увидеть, как все гармоники, кратные трем, ведут себя в системах мощности.
Гармоники напряжения
Четные, нечетные, тройные и нечетные нечетные гармоники
Гармоники искаженного (несинусоидального) периодического сигнала можно классифицировать по порядку.
Четные гармоники
Нечетные гармоники
Тройные гармоники
В triplen гармоник искаженного (несинусоидальным) периодического сигнала являются гармониками, частота которых является нечетным целым кратным частоты третьей гармоники (S) искаженного сигнала. Итак, их порядок определяется:
Все тройные гармоники также являются нечетными, но не все нечетные гармоники также являются тройными гармониками.
Нетройные нечетные гармоники
Все гармоники, которые не являются четными или тройными гармониками, также являются нечетными гармониками, но не все нечетные гармоники также являются гармониками, которые не являются четными или тройными гармониками.
Если основная составляющая исключена из гармоник, которые не являются четными или тройными, то порядок остальных гармоник определяется следующим образом:
Гармоники прямой, обратной и нулевой последовательности
В случае сбалансированных трехфазных систем (трехпроводных или четырехпроводных) гармоники набора из трех искаженных (несинусоидальных) периодических сигналов также могут быть классифицированы в соответствии с их последовательностью фаз.
Гармоники прямой последовательности
Гармоники обратной последовательности
Гармоники нулевой последовательности
Все тройные гармоники также являются гармониками нулевой последовательности, но не все гармоники нулевой последовательности также являются тройными гармониками.
Общее гармоническое искажение
Т ЧАС D V знак равно V 2 2 + V 3 2 + V 4 2 + ⋯ + V п 2 V 1 ⋅ 100 % знак равно ∑ k знак равно 2 п V k 2 V 1 ⋅ 100 % <\ displaystyle <\ mathit Т ЧАС D я знак равно я 2 2 + я 3 2 + я 4 2 + ⋯ + я п 2 я 1 ⋅ 100 % знак равно ∑ k знак равно 2 п я k 2 я 1 ⋅ 100 % <\ displaystyle
Обычно мы пренебрегаем высшими гармониками напряжения; однако, если ими не пренебрегать, действительная мощность, передаваемая нагрузке, зависит от гармоник. Среднюю активную мощность можно найти, прибавив произведение напряжения и тока (и коэффициента мощности, обозначенного здесь pf ) на каждой более высокой частоте к произведению напряжения и тока на основной частоте, или
Подставляя это в уравнение для истинного коэффициента мощности, становится ясно, что величина может иметь две составляющие, одна из которых является традиционным коэффициентом мощности (без учета влияния гармоник), а одна из которых является вкладом гармоник в фактор силы:
Имена присваиваются двум различным факторам следующим образом:
Эффекты
Одним из основных эффектов гармоник энергосистемы является увеличение тока в системе. Это особенно характерно для третьей гармоники, которая вызывает резкое увеличение тока нулевой последовательности и, следовательно, увеличивает ток в нейтральном проводнике. Этот эффект может потребовать особого внимания при проектировании электрической системы для обслуживания нелинейных нагрузок.
Помимо повышенного линейного тока, различное электрическое оборудование может пострадать от воздействия гармоник в энергосистеме.
Двигатели
Электродвигатели испытывают потери из-за гистерезиса и вихревых токов, возникающих в железном сердечнике двигателя. Они пропорциональны частоте тока. Поскольку гармоники находятся на более высоких частотах, они приводят к более высоким потерям в сердечнике двигателя, чем частота сети. Это приводит к повышенному нагреву сердечника двигателя, который (в случае чрезмерного) может сократить срок службы двигателя. 5-я гармоника вызывает CEMF (противодействующую электродвижущую силу) в больших двигателях, которая действует в противоположном направлении вращения. CEMF недостаточно велика, чтобы противодействовать вращению; однако он играет небольшую роль в результирующей скорости вращения двигателя.
Телефоны
В Соединенных Штатах обычные телефонные линии предназначены для передачи частот от 300 до 3400 Гц. Поскольку в США электроэнергия распределяется с частотой 60 Гц, она обычно не мешает телефонной связи, поскольку ее частота слишком мала.
Источники
Когда синусоидальное напряжение прикладывается к линейной неизменной во времени нагрузке, такой как нагревательный элемент, ток через него также является синусоидальным. В нелинейных и / или изменяющихся во времени нагрузках, таких как усилитель с ограничивающим искажением, размах напряжения применяемой синусоиды ограничен, и чистый тон загрязнен множеством гармоник.
Когда существует значительный импеданс на пути от источника питания к нелинейной нагрузке, эти искажения тока также будут вызывать искажения формы волны напряжения на нагрузке. Однако в большинстве случаев, когда система подачи энергии работает правильно в нормальных условиях, искажения напряжения будут довольно небольшими, и их обычно можно игнорировать.
Искажение формы волны можно математически проанализировать, чтобы показать, что оно эквивалентно наложению дополнительных частотных компонентов на чистый синусоидальный сигнал. Эти частоты являются гармониками (целыми кратными) основной частоты и иногда могут распространяться наружу от нелинейных нагрузок, вызывая проблемы в других частях энергосистемы.
Классическим примером нелинейной нагрузки является выпрямитель с конденсаторным входным фильтром, где выпрямительный диод пропускает ток к нагрузке только в то время, когда приложенное напряжение превышает напряжение, хранящееся в конденсаторе, что может быть относительно небольшая часть цикла входящего напряжения.
Другими примерами нелинейных нагрузок являются зарядные устройства аккумуляторов, электронные балласты, частотно-регулируемые приводы и импульсные источники питания.