чем больше техпроцесс тем лучше

Intel 7 вместо нм. Новые названия техпроцессов: что изменилось?

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Содержание

Содержание

Еще несколько лет назад основным критерием при выборе компьютерных комплектующих были характеристики «два ядра, два гига». Теперь грамотность пользователей в сфере электроники значительно повысилась. Поэтому перед покупкой компьютера юзеры стараются узнать скрытые характеристики — какой техпроцесс, какая архитектура, сколько транзисторов, и почему Intel 7 это уже не 10 нм, но еще не 7 нм. Подробности — в статье.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Быстрое развитие рынка электроники заставляет маркетинговые отделы работать активнее инженеров. Требования к производительности растут бесконечно, вместе с ними увеличивается и спрос на обновление. Поначалу производители справлялись с ежегодным наращиванием мощности и эффективности в разумных пределах. У компаний имелся запас прочности на несколько лет вперед. Но в какой-то момент процесс уменьшения транзисторов стал усложняться, и началась гонка за оптимизацией. В итоге появились знаменитые «+++» Intel. Но обо всем по порядку.

Что такое техпроцесс

Каждый знает, как выглядит электронная плата — это текстолит с множеством мелких радиодеталей. Размеры этих элементов и их количество могут отличаться от устройства к устройству. В телевизоре 1970 года транзистор может быть размером с колорадского жука, его современный аналог в новой OLED-панели оказывается не крупнее муравья. Но даже такой транзистор-насекомое является неприлично огромным по меркам современной электроники.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

В компьютерных материнских платах используются транзисторы размером с песчинку. В смартфонах некоторые компоненты практически невидимы без микроскопа. Для человека такой масштаб является пределом осязания. Однако для современной электроники это все еще слишком крупно и громоздко. Инженерам приходится уменьшать размеры компонентов до тех пор, пока каждый отдельный элемент не станет практически сопоставим с размерами молекулы. То есть, превратится в наноэлемент.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Из таких наноэлементов и состоят современные микросхемы. Чтобы стало понятнее, достаточно представить, что в процессоре образца 1990-го года использовались транзисторы размером 3 микрометра. Это почти в 30 раз меньше человеческого волоса. В современном чипе Intel Alder Lake используются транзисторы размером 10 нм. Для сравнения, размер молекулы коронавируса составляет 110 нм.

Размер транзисторов и инструкции, по которым они производятся, называются техпроцессом. Чем современнее техпроцесс, тем больше транзисторов умещается в одном и том же объеме. Мы уже подробно обсуждали эту тему с наглядными материалами и сочными цифровыми сравнениями.

Историческая справка

Первая интегральная микросхема появилась в 1958 году. Она представляла собой единый компонент на основе германия, в теле которого было размещено несколько радиоэлементов. Так начался новый этап в развитии электроники. Микросхемы намного упростили производство техники. После изобретения процессора — сложной и «умной» схемы — возможности разработчиков выросли в разы. В этом материале не будем рассматривать первые четырехбитные чипы, а сразу перенесемся в относительно недалекое прошлое.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

В 2000 году компания Intel представила новейшую разработку – Pentium 4. Первый чип этого поколения выпускался на 180-нм техпроцессе. На тот момент технология была самой продвинутой. Она позволила производителю увеличить тактовую частоту ядра, а также объем кэша. Правда, слишком высокая плотность компоновки транзисторов стала причиной перегрева и повышенного энергопотребления. Процессоры этого поколения постепенно доработали. Последней моделью стал чип, выполненный на 65 нм. С этого момента процесс уменьшения транзисторов стал замедляться.

С 2006 года Intel стала использовать новую стратегию разработки процессоров под названием «Тик-Так». Теперь производитель не меняет техпроцесс в каждом семействе, а чередует: на «Тик» представляет новые архитектуру и техпроцесс, а на «Так» только оптимизирует архитектуру. Такой способ чередования просуществовал до 2016 года. Он канул в Лету вместе с процессорами Skylake. В тот момент Intel серьезно зависла на «Так» и протащила 14-нм техпроцесс аж до 2020 года, назвав этот период «Оптимизацией».

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

С тех пор стратегия Intel называется «Процесс-Архитектура-Оптимизация». На этапе «Процесс» компания выпускает новый техпроцесс и новую архитектуру. Следующим этапом становится «Архитектура» — новые процессоры на доработанном техпроцессе. Финальный штрих — «Оптимизация». Здесь компания дорабатывает «обвес» чипа: например, контроллер памяти или графическое ядро.

Как уменьшают транзисторы

Транзистор — это клапан, который регулирует подачу тока. Внутри него есть своего рода заслонка, способная регулировать течение тока в канале. Долгое время производители уменьшали длину канала. Это позволяло им делать транзисторы компактнее и увеличивать плотность размещения полупроводников в кристалле. По размеру этого канала считали техпроцесс — 90 нм, 70 нм, 65 нм.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Как только производители добрались до 22 нм, уменьшать техпроцесс стало невозможно — ток начал протекать сквозь закрытый транзистор. Чтобы решить эту проблему, инженеры начали использовать трехмерные транзисторы FinFET. Раньше полупроводник имел планарную форму, где канал находится в одной плоскости с телом транзистора. Благодаря новой технологии канал удалось поднять выше транзистора и увеличить его Z-высоту. Это позволило снизить количество утечек и продолжить оптимизацию техпроцесса.

После перехода на новую технологию производства исчез единый стандарт измерений техпроцесса. Например, в 14-нм процессорах Intel и Samsung используются каналы разной длины — у Intel длина затвора равна 24 нм, а у Samsung — 30 нм. У каждого производителя процессоров выработалось свое мнение насчет верности измерения. В том числе у Intel, которая избавилась от устаревших нанометров и взяла на вооружение собственные обозначения.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

«7» равняется «10»

За последние семь лет Intel произвела девять поколений процессоров на 14-нм архитектуре. Поначалу это не мешало производителю оставаться лидером на рынке. Но после выхода AMD Ryzen на 7-нм транзисторах Intel сдала позиции. Покупатели обратили внимание на «продвинутый» техпроцесс конкурентов.

Однако, несмотря на двукратную разницу в цифровом обозначении, на практике техпроцессы Intel 14 нм и AMD 7 нм практически не отличаются. Как мы писали выше, нанометры в названии техпроцесса уже не играют прежней роли. Отсюда и такие странности в названиях.

Тем не менее пользователи отлично «клюют» на бутафорские цифры. Поэтому производители задумались о смене привычных обозначений. Например, Intel, чтобы исключить недопонимание со стороны пользователей, ввела названия Intel 7 и Intel 4. Скажете — 7 нм и 4 нм? Не тут-то было. Intel 7 — это старый добрый 10 нм Enhanced SuperFin. Производителя легко понять: покупатель не желает снова видеть уже испробованный 10-нм техпроцесс. Люди требуют перехода на 7 нм «как у того производителя».

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Однако Intel заявляет, что ее фирменная технология изготовления 10-нанометровых чипов превосходит 7-нм технологию TSMC. Причем компания доказывает это реальными цифрами — теперь инженеры оперируют понятием «плотность». Все предельно просто и понятно: чем выше плотность «заселения» кремния полупроводниками, тем они компактнее и технологичнее.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

На одной и той же площади Intel размещает 106 миллиардов 10-нм транзисторов. А вот TSMC не может выйти за пределы 96 миллиардов. Техпроцесс меньше, а транзисторы крупнее — необъяснимый факт из недр маркетингового отдела. Похожие дела обстоят и в отношении будущего Intel 4, который готовится стать конкурентом TSMC 5 нм.

Игра слов

Смена названий техпроцессов — это, прежде всего, рекламный ход. Причем главная причина переименования скрывается где-то в офисе маркетологов. Специалисты манипулируют «хотелками» пользователей, намекая названием «Intel 7» на 7-нм техпроцесс. На самом деле под этой оберткой скрывается улучшенный 10-нм техпроцесс Enhanced SuperFin. Другие производители тоже «не промах» — они называют техпроцесс в нанометрах, но фактически считают «температуру на Марсе». Игра слов и не более.

Источник

7 нм против 12: о чем говорит технологический процесс процессора

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Каждый микропроцессор представляет собой специальную интегральную схему, которая расположена на микроскопическом кристалле кремния. Этот материал используется только из-за того, что обладает свойствами полупроводников: он проводит электроэнергию быстрее диэлектриков и медленнее металлов. Его можно сделать и изолятором, который останавливает движение зарядов, и проводником, который зажигает для них зелёный свет. Этим параметром получится управлять с помощью специальных примесей.В сентябре 2019 года Apple представила три свежих смартфона: iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max. Их главной фишкой, конечно же, оказались камеры, общие принципы работы которых мы обсуждали в отдельном материале. Тем не менее, отдельного внимания также заслужил и процессор новинок. Их «сердцем» стал Apple A13 Bionic, который создан по 7-нанометровому технологическому процессу. Производитель гордится этой цифрой, ведь до неё добрались далеко не все конкуренты. А вот у Xiaomi Redmi 8 Pro чип MediaTek Helio G90T. У него все 12 нм, и кичиться здесь точно нечем…

Вообще, в мире высоких технологий нет ничего быстрее, чем самые проворные микросхемы — процессоры. Они умеют обрабатывать миллиарды операций в секунду, а на их производство уходит настолько много невероятных технологий, что даже становится жутко. Микропроцессоры пошли в массовое производство в 90-х годах прошлого столетия. С того времени они пережили несколько ступеней развития, апогеем которого стало начало 21 века. Именно тогда производителям открылись все основные свойства кремния, и это дало возможность получать максимальную эффективность при минимальных затратах.

Сегодня темпы развития процессоров стремительно падают. Кремниевые технологии быстро приближаются к пределу своих физических возможностей. Да, их частоты всё ещё увеличиваются, но эффективность работы находится в стагнации. Про это в разрезе смартфонов и не только мы расскажем в данной статье.
Что собой в принципе представляет каждый микропроцессор

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Внутри микропроцессора нашлось место для миллионов транзисторов, которые объединены невероятно тонкими проводниками. Для их производства используют алюминий, медь и другие материалы — они предназначены для того, чтобы переваривать информацию. Из них складываются внутренние шины, которые дают процессору возможность работать с математическими и логическими операциями, а также управлять остальными микросхемами устройства в общем и целом.

Одним из самых важных параметров качества микропроцессора всегда была частота работы его кристалла. Именно она определяет число действий, которые могут выполняться за отведённое время — это зависит от того, насколько быстро транзисторы могут переходить из закрытого состояния в открытое. На это далеко не в последнюю очередь влияет технология производства кремниевых пластин — основного компонента процессоров. Чем они меньше, тем разогнать их частоту обычно можно до больших значений.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Даже если верить «Википедии», производство процессоров можно разделить на полтора десятка этапов. Мы решили вкратце расписать каждый из них именно для того, чтобы стало понятно, насколько сложный это процесс. В реальности же он ещё более замысловатый, уж поверьте.

1. Механическая обработка. На этом этапе производитель готовит пластины проводника с определённой геометрией и кристаллографической ориентацией, которая не может отличаться от эталона более чем на 5%. Отдельного внимания также заслуживает класс чистоты поверхности.

2. Химическая обработка. В рамках этого этапа с поверхности удаляются все мельчайшие неровности, которые были созданы во время механической обработки. Для этого, а также для получения необходимых нюансов формы используют плазмохимические методы, а также жидкостное и газовое травление.

3. Эпитаксиальное наращивание. В данном случае проходит добавление слоя полупроводника — осаждение его атомов на подложку. Именно на этом этапе образуется кристаллическая структура, аналогичная структуре подложки, которая часто выполняет роль только лишь механического носителя.

4. Получение маскировки. Чтобы защитить слой полупроводника от последующего проникновения примесей, на этом этапе на него добавляется специальное защитное покрытие. Это происходит путём окисления эпитаксиального слоя кремния, которое становится возможным за счёт высокой температуры или кислорода.

5. Фотолитография. На этом этапе на диэлектрической плёнке создаётся необходимый рельеф. Если до данного этапа в этом пункте статьи вы мало что вообще поняли, то наша задача выполнена — вы осознали, насколько сложно создать процессор, и можете двигаться к следующему пункту.

6. Введение примесей. Здесь речь, конечно же, про электрически активные примеси, которые нужны для образования изолирующих участков, а также электрических переходов, источниками которых могут быть твёрдые, жидкие и газообразные вещества. Для этого используется метод диффузии.

7. Получение омических контактов. Кроме этого, на данном этапе также создают пассивные элементы на пластине. Для этого используется фотолитографическая обработка на поверхности оксида, который покрывает области успешно сформированных структур.

8. Добавление слоёв металла. На этом этапе будущий процессор получает несколько дополнительных слоёв металла, общее количество которых может лихо отличаться и зависит от его уровня. Между ним нужно расположить диэлектрик, в котором есть сквозные отверстия.

9. Пассивация поверхности. Чтобы правильно протестировать кристалл, нужно максимально сильно очистить его от любых возможных загрязнений. Чаще всего это происходит в деионизированной воде на установках гидромеханической или кистьевой отмывки.

10. Тестирование пластины. Для этого обычно используются зондовые головки, которые установлены на специальных установках, используемых для разбраковки пластин. Кстати, до этого самого момента они находятся в неразрезанном на отдельные части состоянии.

11. Разделение пластины. На этом этапе пластину механически разделяют на отдельные кристаллы. Сейчас это делают не только из-за удобства, но и по причине поддержания электронной гигиены. В её рамках в воздухе должно быть критически малое количество пыли, а в процессе разрезания она появится.

12. Сборка кристалла. На этом этапе готовый кристалл упаковывают в специальный корпус, который в дальнейшем герметизируют. Здесь к нему также подключают все необходимые выводы, которые нужны для его дальнейшего использования — это практически готовый чип.

13. Измерения и испытания. На данном этапе происходит проверка чипа на соответствие заданным техническим параметрам. Да, даже в настолько точном и высокотехнологическом производстве случается брак, который возрастает при увеличении сложности задачи. Отсюда и немаленькая цена.

14. Контроль и маркировка. Это пара финальных этапов в производстве чипов. В данном случае их снова проверяют, потом наносят на них специальное защитное покрытие, а также упаковывают, чтобы доставить готовое изделие конкретному заказчику.Технологический процесс, который используется при производстве микропроцессоров, влияет на их размер. Если обрезать количество нанометров, о котором сегодня все говорят, можно уменьшить габариты самого чипа. Это сделает его не только более быстрым — он будет выделять меньше тепла и расходовать меньше энергии. Данные показатели всегда были очень важны в полноценных компьютерах, но теперь выходят чуть ли не на первое место и в современных смартфонах.
Какие этапы проходят процессоры во время производства

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Выше скорость работы. В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.Хронология уменьшения размера технологического процесса
’70-е:
3 мкм — такого технологического процесса компания Zilog достигла в 1975 году, Intel — в 1979-м.
’80-е:
1,5 мкм — Intel уменьшила технологический процесс до этого уровня в 1982 году;
0,8 мкм — уровень Intel в конце 1980-х.
’90-е:
0,6–0,5 мкм — компании Intel и IBM находились на этом уровне в 1994–1995 годах;
350 нм — Intel, IBM, TSMC к 1997-му;
250 нм — Intel, 1998 год;
180 нм — Intel и AMD, 1999 год.
’00-е:
130 нм — этого уровня компании Intel, AMD достигли в 2001–2002 годах;
90 нм — Intel в 2002–2003 годах;
65 нм — Intel в 2004–2006 годах;
45–40 нм — Intel в 2006–2007 годах;
32–28 нм — Intel в 2009–2010 годах;
22–20 нм — Intel в 2009–2012 годах;
’10-е:
14–16 нм — Intel наладила производство таких процессоров к 2015 году;
10 нм — TSMC делала такие процессоры уже в 2016-м, а Samsung — в 2017 году;
7 нм — TSMC, 2018 год;
6 нм — TSMC только анонсировала такой технологический процесс в 2019 году;
5 нм — TSMC начала тестирование такого техпроцесса в 2019 году;
3 нм — Samsung обещает делать процессоры с таким технологическим процессом к 2021 году.
Чем меньше нанометров в технологическом процессе, тем:

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Ниже выделение тепла. Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка. При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.

Меньше потребление энергии. В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах. Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.

В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2016 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.

Источник

Что такое техпроцесс в микрочипах и как он влияет на производство полупроводников

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Содержание

Содержание

Одна из главных характеристик процессоров и других микрочипов — техпроцесс. Что означает этот термин и насколько он влияет на производительность — разберемся в этом блоге.

Что такое техпроцесс

Ключевым элементом практически каждой вычислительной схемы является транзистор. Это полупроводниковый элемент, который служит для управления токами. Из транзисторов собираются основные логические элементы, а на их основе создаются различные комбинационные схемы и уже непосредственно процессоры.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Чем больше транзисторов в процессоре — тем выше его производительность, ведь можно поместить на кристалл большее количество логических элементов для выполнения разных операций.

В 1971 году вышел первый микропроцессор — Intel 4004. В нем было всего 2250 транзисторов. В 1978 мир увидел Intel 8086 и в нем помещались целых 29 000 транзисторов. Легендарный Pentium 4 уже включал 42 миллиона. Сегодня эти числа дошли до миллиардов, например, в AMD Epyc Rome поместилось 39,54 миллиарда транзисторов.

МодельГод выпускаКол-во транзисторов
Xeon Broadwell-E520167 200 000 000
Ryzen 5 1600 X20174 800 000 000
Apple A12 Bionic (шестиядерный ARM64)20186 900 000 000
Qualcomm Snapdragon 8cx20188 500 000 000
AMD Ryzen 7 3700X20195 990 000 000
AMD Ryzen 9 3900X20199 890 000 000
Apple M1 ARM202016 000 000 000

Много это или мало? На 2020 год на нашей планете приблизительно 7,8 миллиардов человек. Если представить, что каждый из них это один транзистор, то полтора населения планеты
с легкостью поместилась бы в процессоре Apple A14 Bionic.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

В 1975 году Гордон Мур, основатель Intel, вывел скорректированный закон, согласно которому число транзисторов на схеме удваивается каждые 24 месяца.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Нетрудно посчитать, что с момента выхода первого процессора до сего дня, а это всего-то 50 лет, число транзисторов увеличилось в 10 000 000 раз!

Казалось бы, поскольку транзисторов так много, то и схемы должны вырасти в размерах на несколько порядков. Площадь кристалла у первого процессора Intel 4004 — 12 мм², а у современных процессоров AMD Epyc — 717 мм² (33,5 млрд. транзисторов). Получается, по площади кристалла процессоры выросли всего в 60 раз.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Как же инженерам удается втискивать такое огромное количество транзисторов в столь маленькие площади? Ответ очевиден — размер транзисторов также уменьшается. Так
и появился термин, который дал обозначение размеру используемых
полупроводниковых элементов.

Упрощенно говоря, техпроцесс — это толщина транзисторного слоя, который применяется в процессорах.

Чем мельче транзисторы, тем меньше они потребляют энергии, но при этом сохраняют текущую производительность. Именно поэтому новые процессоры имеют большую вычислительную мощность, но при этом практически не увеличиваются в размерах
и не потребляют киловатты энергии.

Какие существуют техпроцессы: вчера и сегодня

Первые микросхемы до 1990-х выпускались по технологическому процессу 3,5 микрометра. Эти показатели означали непосредственно линейное разрешение литографического оборудования. Если вам трудно представить, насколько небольшая величина в 3 микрометра, то давайте узнаем, сколько транзисторов может поместиться в ширине человечного волоса.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Уже тогда транзисторы были настолько маленькими, что пару десятков с легкостью помещались в толщине человеческого волоса. Сейчас техпроцесс принято соотносить с длиной затвора транзисторов, которые используются в микросхеме. Нынешние транзисторы вышли на размеры в несколько нанометров.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Для Intel актуальный техпроцесс — 14 нм. Насколько это мало? Посмотрите в сравнении
с вирусом:

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Однако по факту текущие числа — это частично коммерческие наименования. Это означает, что в продуктах по техпроцессу 5 нм на самом деле размер транзисторов не ровно столько, а лишь приближенно. Например, в недавнем исследовании эксперты сравнили транзисторы от Intel по усовершенствованному техпроцессу 14 нм и транзисторы от компании TSMC на 7 нм. Оказалось, что фактические размеры на самом деле отличаются не на много, поэтому величины на самом деле относительные.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Рекордсменом сегодня является компания Samsung, которая уже освоила техпроцесс 5 нм. По нему производятся чипы Apple A14 для мобильной техники. Одна из последних новинок Apple M1 — первый ARM процессор, который будет установлен в ноутбуках от Apple.

Продукцию по техпроцессу в 3 нм Samsung планирует выпускать уже к 2021 году. Если разработчикам действительно удастся приблизиться к таким размерам, то один транзистор можно будет сравнить уже с некоторыми молекулами.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Насколько маленьким может быть техпроцесс

Уменьшение размеров транзисторов позволяет делать более энергоэффективные и мощные процессоры, но какой предел? На самом деле ответа никто не знает.

Проблема кроется в самой конструкции транзистора. Уменьшение прослойки между эмиттером и коллектором приводит к тому, что электроны начинают самостоятельно просачиваться, а это делает транзистор неуправляемым. Ток утечки становится слишком большим, что также повышает потребление энергии.

чем больше техпроцесс тем лучше. Смотреть фото чем больше техпроцесс тем лучше. Смотреть картинку чем больше техпроцесс тем лучше. Картинка про чем больше техпроцесс тем лучше. Фото чем больше техпроцесс тем лучше

Не стоит забывать, что каждый транзистор выделяет тепло. Уже сейчас процессоры Intel Core i9-10ХХХ нагреваются до 95 градусов Цельсия, и это вполне нормальный показатель. Однако при увеличении плотности транзисторов температуры дойдут до таких пределов, когда даже водяное охлаждение окажется полностью бесполезным.

Самые смелые предсказания — это техпроцесс в 1,4 нм к 2029 году. Разработка еще меньших транзисторов, по словам ученых, будет нерентабельной, поэтому инженерам придется искать другие способы решения проблемы. Среди возможных альтернатив — использование передовых материалов вместо кремния, например, графена.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *