чем больше частота колебаний тем больше звук
ЗВУКОВЫЕ ВОЛНЫ
Тестирование онлайн
Звуковая волна
Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда.
Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.
Звуковая волна распространяется через дерево
Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Дело в том, что человеческое ухо воспринимает не все волны, а только те, которые создают тела, колеблющиеся с частотой от 16Гц до 20000Гц. Такие волны называются звуковыми. Колебания с частотой меньше 16Гц называется инфразвуком. Колебания с частотой больше 20000Гц называются ультразвуком.
Скорость звука
Звуковые волны распространяются не мгновенно, а с некоторой конечной скоростью (аналогично скорости равномерного движения).
Именно поэтому во время грозы мы сначала видим молнию, то есть свет (скорость света гораздо больше скорости звука), а затем доносится звук.
Высота, тембр и громкость звука
Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.
Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.
Частота звуковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.
Звуковые явления
Отражение звука. Звук отражается от гладких поверхностей. Поэтому при использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счет чего мощность звука увеличивается, и он распространяется на большее расстояние.
Некоторые животные (например, летучая мышь, дельфин) издают ультразвуковые колебания, затем воспринимают отраженную волну от препятствий. Так они определяют местоположение и расстояние до окружающих предметов.
Применение звуковых волн
Ультразвук используется для обнаружения и определения различных повреждений в деталях машин (пустоты, трещины и др.). Прибор, используемый для этой цели называется ультразвуковым дефектоскопом. На исследуемую деталь направляется поток коротких ультразвуковых сигналов, которые отражаются от находящихся внутри нее неоднородностей и, возвращаясь, попадают в приемник. В тех местах, где дефектов нет, сигналы проходят сквозь деталь без существенного отражения и не регистрируются приемником.
Ультразвук широко используется в медицине для постановки диагноза и лечения некоторых заболеваний. В отличие от рентгеновских лучей его волны не оказывают вредного влияния на ткани. Диагностические ультразвуковые исследования (УЗИ) позволяют без хирургического вмешательства распознать патологические изменения органов и тканей. Специальное устройство направляет ультразвуковые волны с частотой от 0,5 до 15МГц на определенную часть тела, они отражаются от исследуемого органа и компьютер выводит на экран его изображение.
Частота колебаний звуковых волн
Частота колебаний звуковых волн – количество колебаний звуковой волны в секунду. Единица измерения – Герцы (Гц).
1 Гц = 1 колебание в секунду
Человек способен воспринимать звук в диапазоне от 20 до 20000 Гц.
Чем меньше частота, тем ниже звук и чем больше частота, тем звук выше.
Высота – это качество звука, которое зависит от частоты (свойство звука).
В музыкальном продакшне в основном используются частоты в диапазоне примерно 30 – 16000 Гц.
Условно весь частотный диапазон можно разделить на несколько полос.
Разделение частотного диапазона
1. Инфразвук – звук ниже порога слышимости (0 – 20 Гц)
2. Низкие частоты (20 – 100 Гц)
3. Нижняя середина (100 – 1000 Гц)
4. Средние частоты (1 – 4 кГц)
5. Высокие частоты (4 – 8 кГц)
7. Ультразвук (свыше 20 кГц)
Чем ниже частота колебаний звуковых волн, тем хуже человек её слышит, но при этом лучше чувствует вибрации.
Субъективную слышимость частот человеком характеризуют кривые равной громкости (или кривые Флэтчера-Мэнсона).
Низкие звуки имеют свойство маскировать более высокие. Они несут много энергии, отвечают за мощь и объём в треке.
Низкие частоты влияют на RMS трека, но при этом меньше всего воздействуют на субъективную громкость. Им необходимо намного больше свободного пространства чем средним и высоким.
Средние частоты отвечают за полноту и объём звучания. Необходимо очень осторожно работать с этими частотами чтобы контролировать «мутные» частоты (200 – 500 Гц).
Высокие частоты воспринимаются человеком как более громкие. Они отвечают за чистоту, детализацию и прозрачность звучания трека. В отличии от низких и средних, высокие частоты несут много пиковых всплесков, поэтому они больше всего влияют на пиковый уровень громкости.
Необходимо понимать, что звуки, частоты которых имеют соотношение 2:1, сливаются в одно целое.
Для того чтобы работать со звуком нужно знать особенности высоких, средних и низких частот. Только знания, подкреплённые практикой, могут сделать звучание ваших треков существенно лучше.
Звуковые волны
Звуковые волны
Источниками звука являются колеблющиеся тела. Но не все колеблющиеся тела издают звуки. Исследования показали, что человеческое ухо способно воспринимать как звук механические колебания с частотой в пределах от 16 до 20 000 Гц (передающиеся обычно через воздух). Поэтому колебания в этом диапазоне частот называются звуковыми.
звуки голосов людей и животных возникают в результате колебаний их голосовых связок, звучание духовых музыкальных инструментов, звук сирены, свист ветра, шелест листьев, раскаты грома обусловлены колебаниями масс воздуха.
Механические колебания, частота колебаний которых превышает 20000 Гц, называются ультразвуковыми, а колебания с частотами менее 16 Гц – инфразвуковыми.
Ультразвук и инфразвук широко распространены в природе, например, их используют для «переговоров» летучие мыши и дельфины. Ультразвук также используют в технике, например, для измерения глубины моря.
Высота звука зависит от частоты колебаний: чем больше частота колебаний источника звука, тем выше издаваемый им звук.
Чистым тоном называется звук источника, совершающего гармонические колебания одной частоты.
Звуки от других источников (например, голоса людей, звуки музыкальных инструментов и т.д.) представляют собой совокупность гармонических колебаний разных частот, т.е. совокупность чистых тонов.
Самая низкая (самая малая) частота такого сложного звука называется основной частотой, а соответствующий ей звук определенной высоты – основным тоном (или тоном). Высота сложного звука определяется именно высотой его основного тона.
Все остальные тоны сложного звука называются обертонами. Частоты всех обертонов данного звука в целое число раз больше частоты его основного тона, поэтому их называют также высшими гармоническими тонами.
Обертоны определяют тембр звука, то есть, такое его качество, которое позволяет нам отличать звуки одних источников от других.
Высота звука определяется частотой его основного тона: чем больше частота основного тона, тем выше звук.
Тембр звука определяется совокупностью его обертонов.
Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук.
Громкость звука зависит также от его длительности и от индивидуальных особенностей слушателя.
Звук распространяется в любой упругой среде – твердой, жидкой или газообразной, но не может распространяться в пространстве, где нет вещества.
Скорость звука зависит от свойств среды, в которой распространяется звук.
Звук – это волна, поэтому формулы скорости волны действительны для звуковой волны.
где ν – частота звуковых колебаний, λ — длина звуковой волны, Т — период звуковых колебаний.
При решении задач скорость звуковой волны считают равной 340 м/с.
В результате отражения звука от различных преград (например, стен большого пустого помещения) возникает эхо.
Конспект составлен на основании теоретического материала учебника «Физика 9 класс» А.В. Перышкин, Е.М. Гутник.
§ 31. Высота, тембр и громкость звука
Обратимся ещё раз к опыту, изображённому на рисунке 74. Как уже говорилось, свободная часть линейки создаёт звук только в том случае, если она колеблется с частотой, не меньшей чем 16 Гц. Переместим линейку в тисках вниз (укоротив тем самым верхнюю часть) и приведём её в колебательное движение. Заметим, что частота колебаний линейки увеличилась, а издаваемый ею звук стал выше. Продолжая периодически укорачивать колеблющуюся часть линейки, убедимся в том, что с увеличением частоты колебаний звук повышается.
Проверим этот вывод на другом опыте. Возьмём зубчатый диск (рис. 79, а), с помощью специального устройства приведём его во вращение и прикоснёмся к зубчатому краю тонкой картонной пластинкой (рис. 79, б). Под воздействием зубьев вращающегося диска пластинка начнёт совершать вынужденные колебания, в результате чего мы услышим звук. Увеличим скорость вращения диска, и пластинка станет колебаться чаще, а издаваемый ею звук будет выше.
На основании описанного опыта можно заключить, что высота звука зависит от частоты колебаний: чем больше частота колебаний источника звука, тем выше издаваемый им звук.
Звуки от других источников (например, звуки различных музыкальных инструментов, голоса людей, звук сирены и многие другие) представляют собой совокупность гармонических колебаний разных частот, т. е. совокупность чистых тонов.
Самая низкая (т. е. самая малая) частота такого сложного звука называется основной частотой, а соответствующий ей звук определённой высоты — основным тоном (иногда его называют просто тоном). Высота сложного звука определяется именно высотой его основного тона.
Все остальные тоны сложного звука называются обертонами. Частоты всех обертонов данного звука в целое число раз больше частоты его основного тона (поэтому их называют также высшими гармоническими тонами).
Обертоны определяют тембр звука, т. е. такое его качество, которое позволяет нам отличать звуки одних источников от звуков других. Например, мы легко отличаем звук рояля от звука скрипки даже в том случае, если эти звуки имеют одинаковую высоту, т. е. одну и ту же частоту основного тона. Отличие же этих звуков обусловлено разным набором обертонов (совокупность обертонов различных источников может отличаться количеством обертонов, их амплитудами, сдвигом фаз между ними, спектром частот).
Таким образом, высота звука определяется частотой его основного тона: чем больше частота основного тона, тем выше звук.
Тембр звука определяется совокупностью его обертонов.
Чтобы выяснить, от чего зависит громкость звука, вернёмся к опыту, изображённому на рисунке 76. К одной ветви камертона подводят вплотную маленький висящий на нити шарик, а по другой слегка ударяют молоточком. Обе ветви камертона приходят в колебательное движение. Слышен негромкий звук. Шарик отскакивает от колеблющейся ветви на небольшое расстояние. Затем камертон глушат и снова ударяют по нему, но гораздо сильнее, чем в первый раз. Теперь камертон звучит громче, а шарик отскакивает на большее расстояние, что свидетельствует о большей амплитуде колебаний ветвей.
Этот и многие другие опыты позволяют сделать вывод о том, что громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук.
В рассмотренном опыте частоты колебаний обоих звуков — тихого и громкого — одинаковы, так как их источником является один и тот же камертон. Но если сравнить звуки разных частот, то кроме амплитуды колебаний пришлось бы учитывать ещё один фактор, влияющий на громкость. Дело в том, что чувствительность человеческого уха к звукам разной частоты различна. При одинаковых амплитудах как более громкие воспринимаются звуки, частоты которых лежат в пределах от 1000 до 5000 Гц. Поэтому, например, высокий женский голос с частотой 1000 Гц будет для нашего уха громче низкого мужского с частотой 200 Гц, даже если амплитуды колебаний голосовых связок в обоих случаях одинаковы. Громкость звука зависит также от его длительности и от индивидуальных особенностей слушателя.
Громкость звука — это субъективное качество слухового ощущения, позволяющее располагать все звуки по шкале от тихих до громких.
Единица громкости звука называется сон.
В практических задачах громкость звука принято характеризовать уровнем звукового давления, измеряемым в белах (Б) или децибелах (дБ), составляющих десятую часть бела.
Например, звуку, возникающему при листании газеты, соответствует уровень звукового давления порядка 20 дБ, звуку звонка будильника — примерно 80 дБ, двигателя самолёта — порядка 130 дБ (такой громкий звук вызывает у человека болевое ощущение).
Систематическое воздействие на человека громких звуков, особенно шумов (совокупности звуков разной громкости, высоты тона, тембра), неблагоприятно отражается на его здоровье.
В шумных районах у многих людей появляются симптомы шумовой болезни: повышенная нервная возбудимость, быстрая утомляемость, повышенное артериальное давление. Поэтому в больших городах приходится принимать специальные меры для уменьшения шумов, например запрещать звуковые сигналы автомобилей.
Вопросы
1. С какой целью проводились опыты, изображённые на рисунках 74 и 79? Какой был сделан вывод по результатам этих опытов?
2. Как на опыте удостовериться в том, что из двух камертонов более высокий звук издаёт тот, у которого больше собственная частота? (Частоты на камертонах не указаны.)
3*. От чего зависит высота звука?
4. Как изменится громкость звука, если уменьшить амплитуду колебаний его источника?
5. Звук какой частоты — 500 Гц или 3000 Гц — человеческое ухо воспримет как более громкий при одинаковых амплитудах колебаний источников этих звуков?
6. От чего зависит громкость звука?
7. Как отражается на здоровье человека систематическое действие громких звуков?
Упражнение 29
1. Какое насекомое чаще машет крыльями в полёте — шмель, комар или муха? Почему вы так думаете?
2. Зубья вращающейся циркулярной пилы создают в воздухе звуковую волну. Как изменится высота звука, издаваемого пилой при её холостом ходе, если на ней начать распиливать толстую доску из плотной древесины? Почему?
3. Известно, что чем туже натянута струна на гитаре, тем более высокий звук она издаёт. Как изменится высота звучания гитарных струн при значительном повышении температуры окружающего воздуха? Ответ поясните.
Физика. 11 класс
§ 6. Звуковые волны
|
Источник звука | ν, Гц | Источник звука | ν, Гц |
Мужской голос: | 80-500 | Орган | 22-16000 |
80-350 | Флейта | 260-15000 | |
Баритон | 100-400 | Скрипка | 260-15000 |
тенор | 130-500 | Арфа | 30-15000 |
Женский голос: | 170-1400 | Барабан | 90-14000 |
контральто | 170-780 | Контрабас | 60-8000 |
меццо-сопрано | 200-1000 | Виолончель | 70-8000 |
сопрано | 250-1300 | Труба | 60-6000 |
колоратурное сопрано | 260-1400 | Саксофон | 80-8000 |
Рояль | 90-9000 |
Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 4).
Таблица 4. Скорость звука в различных средах
Среда | v, | |
Воздух | 0 | 331 |
Воздух | 20 | 343 |
Вода | 20 | 1490 |
Глицерин | 20 | 1920 |
Ртуть | 20 | 1450 |
Лед | 0 | 3280 |
Сталь | 20 | 5050 |
Стекло | 20 | 5300 |
Чугун | 20 | 3850 |
На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.
Интервал частот музыкальных звуков, на границах которого звуки по частоте отличаются в 2 раза, называют октавой (рис. 46).
Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов. Основной тон называется также первой гармоникой. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр (рис. 47).
Отношение скорости движения объекта к скорости звука в среде, в которой перемещается объект, называется «числом Маха», названным в честь австрийского физика Эрнста Маха (1838—1916). Поэтому говорят, что объект, движущийся со скоростью звука, перемещается со скоростью в один мах. При этом все волновые поверхности звуковой волны концентрируются в одной точке (рис. 47-1, б). 14 декабря 1947 г. летательный аппарат впервые преодолел звуковой барьер (рис. 47-1, г).
Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами.
Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образовано из начальных букв трех английских слов: sound — звук; navigation — навигация; range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой.
Эхолокацию используют многие животные: китообразные (дельфины), летучие мыши, птицы гуахаро, гнездящиеся в глубоких пещерах Венесуэлы и на острове Тринидад, стрижи-салаганы, живущие в пещерах Юго-Восточной Азии.
Волны ультразвуковых частот широко используются в медицине в диагностических целях, например УЗИ-сканеры позволяют исследовать внутренние органы человека.
Ультразвуковая дефектоскопия является одним из самых распространенных методов неразрушающего контроля. Он основан на исследовании процесса распространения ультразвуковых колебаний с частотами 0,5—25 кГц в контролируемых изделиях с использованием специальной аппаратуры — ультразвукового преобразователя и дефектоскопа.
- чего бояться мыши дома
- Выбивает автомат в щитке что делать если при включении