Вычислить полуоси гиперболы зная что расстояние между фокусами равно 8
Написать уравнение асимптот гиперболы, у которой вещественная ось 2а = 8, а расстояние между фокусами, лежащими на оси Ох, равно 10?
Написать уравнение асимптот гиперболы, у которой вещественная ось 2а = 8, а расстояние между фокусами, лежащими на оси Ох, равно 10.
Составить каноническое уравнение гиперболы, действительная полуось которой равна 3, а эксцентриситет = 5 / 3?
Составить каноническое уравнение гиперболы, действительная полуось которой равна 3, а эксцентриситет = 5 / 3.
Составить каноническое уравнение эллипса, сумма полуосей которого равна 8 и расстояние между фокусами = 8.
Найти координаты фокусов гиперболы, заданной уравнением y = k / x?
Найти координаты фокусов гиперболы, заданной уравнением y = k / x.
Построить гиперболу и её асимптоты?
Построить гиперболу и её асимптоты.
Найти фокусы гиперболы и угол между асимптотами.
Составить уравнение элипса, фокусы которого лежат на оси абсцисс, симметрично относительно к началу координат, зная, что его малая ось равна 10, а ексцентриситет равен 12 / 13?
Составить уравнение элипса, фокусы которого лежат на оси абсцисс, симметрично относительно к началу координат, зная, что его малая ось равна 10, а ексцентриситет равен 12 / 13.
+ как написать уравнение гиперболы.
Что можно сказать о координатах точки А, симметричной самой себе относительно а)оси ОХ?
Что можно сказать о координатах точки А, симметричной самой себе относительно а)оси ОХ.
Пусть х ящиков понадобилось, чтобы уложить виноград как планировалось, тогда 9, 375х количество всего винограда. В итоге виноград положили в большие ящики и их понадобилось на 40 меньше, получается весь виноград сложили в 12, 5(х–40). Составим урав..
1000000 вот так вот так вот.
4 2 / 3 = 14 / 3 1) 14 / 3 : 2 / 3 = 7(брус. ) Ответ : получилось 7 брусков.
360 / 5400 = (360 : 360) / (5400 : 360) = 1 / 15.
Бася выше всех, Даша ниже всех. По возрастанию девочки идут так : Даша, Галя, Валя, Аля, Бася. А какое еще тут пояснение, все и так элементарно.
Вычислить полуоси гиперболы зная что расстояние между фокусами равно 8
По сути, мы получили уравнение эллипса. Упростим его с помощью ряда несложных математических преобразований:
Установим форму эллипса, пользуясь его каноническим уравнением.
2. Найдем точки пересечения эллипса с осями координат. Положив y = 0, найдем точки A 1 ( a ; 0) и A 2 (– a ; 0), в которых ось 0 x пересекает эллипс. Положив в уравнении (2.17) x = 0, находим точки пересечения эллипса с осью 0 y : B 1 (0; b ) и B 2 (0;– b ). Точки A 1 , A 2 , B 1 , B 2 называются вершинами эллипса. Отрезки А1А2, В1В2, а также их длины 2 a и 2 b – соответственно большая и малая оси эллипса (рис. 2.4).
3. Из уравнения (2.17) следует, что каждое слагаемое в левой части не превосходит единицы, т.е.:
4. В уравнении (2.17) левая часть – сумма неотрицательных слагаемых, т.е. при возрастании одного слагаемого другое будет уменьшаться, если | x | возрастает, | y | уменьшается и наоборот.
Отсюда видно, что чем меньше эксцентриситет эллипса, тем будет менее эллипс сплющенным; при ε = 0 эллипс превращается в окружность.
Прямые – директрисы эллипса.
По формуле расстояния между двумя точками получаем:
Эксцентриситет эллипса
Примечание. Если эллипс (окружность) вращать вокруг одной из его осей, то описываемая им поверхность будет эллипсоидом вращения (сферой)
Пример 2.6. В геодезии используется система географических координат, основанная на понятии геоида. Геоид – поверхность Земли, ограниченная уровенной поверхностью, продолженной под континенты. Поверхность геоида отличается от физической поверхности Земли, на которой резко выражены горы и океанические впадины.
Тело, поверхность которого более всего соответствует поверхности геоида, имеет определенные размеры и ориентирована соответственно в теле Земли, называется референц–эллипсоидом. В нашей стране с 1946 года для всех геодезических работ принят референц–эллипсоид Красовского с параметрами a = 6 378 245 м, b = 6 356 863 м, α = 1: 298,3.
Линия, проходящая вертикально через центр эллипсоида является полярной осью. Линия, проходящая через центр эллипсоида, перпендикулярно к полярной оси, – экваториальной осью. При пересечении поверхности эллипсоида плоскостью, проходящей через его центр, перпендикулярно к полярной оси, образуется окружность, называемая экватором. Окружность, полученная от пересечения поверхности эллипсоида плоскостью, параллельной плоскости экватора, называется параллелью. Линия пересечения поверхности эллипсоида с плоскостью, проходящей через заданную точку и полярную ось, называется меридианом данной точки. Положение точки на земной поверхности определяется пересечением параллели и меридиана, проходящих через нее. Угол φ между плоскостью экватора и отвесной линией называется географической широтой. Для определения долгот точек один из меридианов (Гринвичский) принимают за начальный или нулевой. Угол λ, составленный плоскостью меридиана, проходящего через данную точку, и плоскостью начального меридиана, называется географической долготой
Установим форму гиперболы, исходя из ее канонического уравнения.
Примечание. При вращении гиперболы вокруг ее действительной оси образуется двуполостный гиперболоид, вокруг ее мнимой оси – однополостный гиперболоид
Подробно данные уравнения рассмотрены в теме: «Исследование общего уравнения 2–ой степени» (смотри схему 10), частными случаями которого являются данные формулы.
Содержание:
Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.
Возможны два вида задач:
Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
Эллипс
Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между
).
Если а =Ь, то уравнение (7.3) можно переписать в виде:
(7.5)
Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами
будет окружность (4) переводить в эллипс, заданный соотношением
Число называется эксцентриситетом эллипса. Эксцентриситет
характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении
становится более вытянутым
Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.
Гипербола
Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между
).
Тогда А расстояние
Подставив в формулу r=d, будем иметь
. Возведя обе части равенства в квадрат, получим
или
(9.4.1)
Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.
Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а
О. Для этого выделим полный квадрат:
и сделаем параллельный перенос по формулам
Пример:
Кривые второго порядка на плоскости
Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:
где коэффициенты А, В и С не равны одновременно нулю
Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.
Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.
Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению
которое называют каноническим уравнением эллипса.
Число а называют большей полуосью эллипса, число — мень-
Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.
В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.
Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.
Так, в случае а>b эксцентриситет эллипса выражается формулой:
Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности
Чем больше эксцентриситет, тем более вытянут эллипс.
Пример:
Показать, что уравнение
является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.
Решение:
Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:
— каноническое уравнение эллипса с центром в точке
большей полуосью а=3 и меньшей полуосью
Найдем эксцентриситет эллипса:
Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси
параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.
В новой системе координат координаты вершин и фокусов гиперболы будут следующими:
Переходя к старым координатам, получим:
Построим график эллипса.
Задача решена.
Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.
Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Кривые второго порядка
Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух данных, называемых фокусами, есть величина постоянная, равная 2a, и большая чем расстояние между фокусами, равное 2c (рисунок 6).
|
Рисунок 6 |
Простейшее каноническое уравнение эллипса получается в системе координат, в которой за ось абсцисс выбрана прямая, соединяющая фокусы, начало координат 0 − середина отрезка, концами которого служат фокусы, ось ординат – прямая, проходящая перпендикулярно оси ОX через точку 0. Тогда уравнение эллипса примет следую-
щий вид:
где
При таком выборе системы координат оси координат совпадают с осями симметрии эллипса, а начало координат − с центром симметрии. Точки А1(a; 0), А2(–a; 0), В1(0; b), В2(0; –b) называются вершинами эллипса. Отрезки, заключенные между вершинами, называются осями эллипса: большая (фокальная) ось А1А2 = 2a, малая ось В1В2 = 2b. Параметры a и b уравнения равны полуосям эллипса. Эксцентриситетом (e) эллипса называется отношение расстояния (2c) между фокусами к большей оси (2a), т. е. ; очевидно, что e 2 = 6.
Ответ:
Тест 22. Уравнение эллипса, полуоси которого равны a = 3, b = 2, имеет вид:
1)
2)
3)
Тест 23. Дано уравнение эллипса
Вычислить длину осей, фокусное расстояние, эксцентриситет:
1) 16; 9; 25;
2) 8; 6; 2
Пример 12. Дан эллипс Написать уравнение его директрис.
Уравнения директрис следующие: . Из уравнения а 2 = 36,
b 2 = 20. Следовательно, a = 6, или с = 4. Найдем e =
Подставим в уравнения
Уравнение эллипса, центр которого находится в точке (х0; у0), а оси симметрии параллельны осям координат, имеет вид
Тест 24. Центр эллипса находится в точке:
Гиперболой называется множество точек плоскости, модуль разности от каждой из которых до двух данных точек, называемых фокусами, есть величина постоянная, равная 2a, и меньшая чем расстояние между фокусами, равное 2c (рисунок 7).
|
Простейшее каноническое уравнение гиперболы имеет вид
(1)
Прямая, соединяющая фокусы F1, F2 гиперболы, служит осью абсцисс, начало координат находится в середине между фокусами; при этом оси координат совпадают с осями симметрии гиперболы, начало координат – с ее центром симметрии (оси и центр гиперболы).
Гипербола имеет две действительные вершины А1(a; 0), А2(–a; 0) на фокальной оси; отрезок А1А2 = 2a называется действительной осью гиперболы, отрезок В1В2 = 2b – мнимой осью гиперболы. Таким образом, параметры a и b в уравнении гиперболы равны длинам действительной и мнимой полуосей соответственно.
Если a = b, то гипербола называется равносторонней.
Если мнимая ось гиперболы имеет длину 2a и направление по оси x, а действительная ось, длиной 2b, совпадает с осью y, то уравнение такой гиперболы имеет следующий вид:
(2)
где
Гиперболы (1) и (2) называются сопряженными гиперболами.
Эксцентриситетом гиперболы называется отношение расстояния между фокусами к действительной оси: e = и при этом e > 1. Директрисами гиперболы называются прямые, перпендикулярные к фокальной оси и отстоящие на расстоянии, равном
Уравнения директрис следующие:
Асимптоты гиперболы определяются равенствами
Если точка, двигаясь по гиперболе, неограниченно удаляется, то расстояние ее от одной из асимптот стремится к нулю. Асимптоты являются диагоналями прямоугольника со сторонами 2a, 2b (рисунок 7).
Пример 13.Составить уравнение гиперболы, оси которой совпадают с осями координат, зная, что:
1. Расстояние между вершинами равно 8, а расстояние между фокусами – 10.
2. Действительная ось равна 6, гипербола проходит через точку
(9; –4).
1. Уравнение гиперболы имеет вид
Ответ:
2. Так как действительная ось равна 6, то 2a = 6 или a =3. Поэтому уравнение гиперболы принимает вид Поскольку гипербола проходит через точку (9; –4), то ординаты этой точки обращают уравнение в истинное равенство, т. е.
или
или 9 – 1 =
или b 2 =
= 2.
Ответ:
Тест 25. Уравнение гиперболы, действительная ось которой равна 10 и лежит на оси ОX, а мнимая ось равна 16 и лежит на оси ОY, имеет вид:
1)
2)
3)
Тест 26. Дано уравнение гиперболы Вычислить длину осей, фокусное расстояние, эксцентриситет:
1) 10; 16; 2
2) 4; 5;
3) 5; 4;
Пример 14. Дана гипербола Написать уравнение ее директрис и асимптот.
Из уравнения а 2 = 16, b 2 = 25. Откуда a =4, b =5. Найдем Тогда уравнения директрис следующие:
, или x =
, или x =
Уравнения асимптот после подстановки a, b принимают вид y =
Ответ: x = y =
Тест 27. Указать, принадлежит ли точка (0; 2) гиперболе = 1:
Уравнение гиперболы, центр которой находится в точке (х0; у0), действительная ось совпадает с осью ОX, мнимая – с осью ОY, имеет вид
Тест 28. Центр гиперболы находится в точке:
Ответы на тестовые задания
Номер теста |
Правильный ответ |
Парабола
Параболой называется геометрическое место точек, равноудаленных от данной точки, называемой фокусом параболы, и данной прямой, называемой директрисой параболы (рисунок 8).
|
Рисунок 8 |
Если за ось абсцисс принять перпендикулярную прямую, проведенную из фокуса к директрисе, а начало координат поместить посередине между фокусом и директрисой, то уравнение параболы примет вид
где р – параметр параболы, расстояние от фокуса параболы до ее директрисы.
Парабола имеет одну ось симметрии, которая совпадает при таком выборе системы координат с осью X. Единственная вершина параболы совпадает с началом координат и является единственной точкой пересечения параболы с осями.
Пример 15. Составить уравнение параболы, зная, что фокусы имеют координаты (0; 5), ось ординат служит осью симметрии, а вершина находится в начале координат.
Так как осью симметрии является ось ОY, то уравнение будет иметь вид х 2 = 2ру, так как фокус в общем случае имеет координаты , то исходя из условия имеем
= 5, откуда p = 10. Таким образом, х 2 = 2 × 10 × у или х 2 = 20у – искомое уравнение.
Тест 29. В уравнении параболы у 2 = 3х значение параметра p равно:
2) ;
Тест 30. Среди уравнений второго порядка указать уравнение гиперболы:
1)
2)
3)
Если вершина параболы находится в точке (x0; y0), то ее каноническое уравнение примет следующий вид:
Ответы на тестовые задания
Номер теста |
Правильный ответ |
Векторная алгебра
При изучении различных разделов экономики, механики, физики, других учебных дисциплин приходится иметь дело с величинами, для характеризации которых в выбранной системе единиц достаточно указать их численные значения. Эти величины называются скалярными. К числу скалярных величин можно отнести длину, площадь, объем, массу, температуру и т. п. Встречаются, тем не менее, такие величины, для определения которых необходимо знать их направления в пространстве. Указанные величины будем называть векторными. Примерами векторных величин являются сила, скорость, ускорение.
Геометрические векторные величины изображаются с помощью направленных отрезков.
Связанным вектором (или направленным отрезком) называется любой отрезок прямой, если только указано, какая из двух ограничивающих его точек является начальной, какая – конечной. Если точка А – начало отрезка, а точка В – его конец, то связанный вектор будем обозначать Его направление будем указывать стрелкой, идущей от начала А к концу В.
Длиной (или модулем) связанного вектора
называется длина отрезка АВ. Связанный вектор, у которого начало и конец совпадают, называется нулевым. Нулевой вектор обозначается 0, его длина равна 0:
он направления не имеет.
Связанные векторы и
называются сонаправленными, если являются сонаправленными лучи
и противоположно направленными – если противоположно направлены эти лучи.
Два ненулевых связанных вектора и
назовем равными (это обозначается
=
), если они сонаправлены и имеют одинаковую длину.
Свободным вектором а (или просто вектором) назовем множество равных между собой связанных векторов. При дальнейшем из контекста будет ясно, какой вектор имеется в виду (связанный или свободный). Для задания вектора достаточно указать какой-либо один вектор из всего множества <AB, CD, MN, ¼> равных связанных векторов, например, (рисунок 9).
Рассмотренные понятия (длина, направление и т. п.), которые введены для связанных векторов, имеют аналоги также и для свободных. Часто векторы обозначают одной жирной строчной буквой: = а (рисунок 10).
Линейные операции над векторами
Определим для свободных векторов операции их сложения, вычитания, умножения вектора на действительное число.
Суммой двух векторов a и b по правилу треугольника называется такой третий вектор с, что начало его совпадает с началом вектора а, а конец – с концом вектора b.
Иногда вместо с = а+bпишут Суммой а1 +а2 +…
… + аn конечного числа векторов называется такой вектор а, который замыкает ломаную линию, построенную из данных векторов а1, а2,…, аn таким образом, что начало каждого последующего вектора совпадает с концом предыдущего. Указанный вектор а направлен из начала первого вектора суммы в конец последнего (правило многоугольника) (рисунок 10).
c = a + b
На рисунке 11 изображена сумма а = а1 + а2 + а3 + а4 + а5 векторов а1, а2, а3, а4, а5.
Произведением вектора а на число a называется вектор b = a а, длина которого равна направление которого совпадает с направлением а, если a > 0, и противоположно направлению а, если
a 0 будем обозначать единичный вектор, имеющий направление вектора а.