Геометрия что означает это
Значение слова «геометрия»
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор.
ГЕОМЕ’ТРИЯ, и, мн. нет, ж. [от греч. gē — земля и metreō — измеряю]. Отдел математики, в к-ром изучаются пространственные формы, их измерение и взаимное расположение. Элементарная г. Аналитическая г. (пользующаяся методами алгебры и анализа). Начертательная г. (занимающаяся решением геометрических задач в пространстве при помощи проектирования на плоскость).
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
геоме́трия
1. раздел математики, изучающий отношения и закономерности, характерные для пространственных объектов
2. перен. разг. размеры, пространственные характеристики чего-либо
Геометрия
Содержание
Классификация
Общепринятую в наши дни классификацию различных разделов геометрии предложил Феликс Клейн в своей «Эрлангенской программе» (1872). Согласно Клейну, каждый раздел изучает те свойства геометрических объектов, которые сохраняются (инвариантны) при действии некоторой группы преобразований, специфичной для каждого раздела. В соответствии с этой классификацией, в классической геометрии можно выделить следующие основные разделы.
Современная геометрия включает в себя следующие дополнительные разделы.
По используемым методам выделяют также такие инструментальные подразделы.
История
Традиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину. При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают составленные около 300 до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом.
Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием.
Средние века немного дали геометрии, и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода («Рассуждение о методе», 1637). Точкам сопоставляются наборы чисел, это позволяет изучать отношения между формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Примерно одновременно с этим Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями.
Ф. Клейн в «Эрлангенской программе» систематизировал все виды однородных геометрий; согласно ему геометрия изучает все те свойства фигур, которые инвариантны относительно преобразований из некоторой группы. При этом каждая группа задаёт свою геометрию. Так, изометрии (движения) задаёт евклидову геометрию, группа аффинных преобразований — аффинную геометрию.
Геометрия
Полезное
Смотреть что такое «Геометрия» в других словарях:
ГЕОМЕТРИЯ — (греч. geometria, от ge земля, и metron мера). Часть математики, имеющая предметом свойства и измерения линий, поверхностей и объемов тел. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГЕОМЕТРИЯ греч. geometria,… … Словарь иностранных слов русского языка
ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, раздел математики, предметом изучения которого являются пространственные отношения и формы. Для большинства людей геометрия ассоциируется только с ГЕОМЕТРИЕЙ ЕВКЛИДА, предметом которой являются плоскости и жесткие геометрические фигуры … Научно-технический энциклопедический словарь
ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, геометрии, мн. нет, жен. (от греч. ge земля и metreo измеряю). Отдел математики, в котором изучаются пространственные формы, их измерение и взаимное расположение. Элементарная геометрия. Аналитическая геометрия (пользующаяся методами… … Толковый словарь Ушакова
ГЕОМЕТРИЯ — (от гео. и. метрия), часть математики, изучающая пространственные формы (например, фигуры и тела), их отношения (например, взаимное расположение) и их обобщения. Зарождение геометрии относится ко 2 му тысячелетию до нашей эры, в… … Современная энциклопедия
ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, и, жен. Раздел математики, изучающий пространственные отношения и формы. | прил. геометрический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
геометрия — сущ., кол во синонимов: 9 • астероид (579) • линиолонгиметрия (2) • линиометрия (2) … Словарь синонимов
геометрия — – правильная форма авто. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь
геометрия — конфигурация геометрическая форма — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы конфигурациягеометрическая форма EN geometry … Справочник технического переводчика
ГЕОМЕТРИЯ
Смотреть что такое «ГЕОМЕТРИЯ» в других словарях:
ГЕОМЕТРИЯ — (греч. geometria, от ge земля, и metron мера). Часть математики, имеющая предметом свойства и измерения линий, поверхностей и объемов тел. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГЕОМЕТРИЯ греч. geometria,… … Словарь иностранных слов русского языка
ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, раздел математики, предметом изучения которого являются пространственные отношения и формы. Для большинства людей геометрия ассоциируется только с ГЕОМЕТРИЕЙ ЕВКЛИДА, предметом которой являются плоскости и жесткие геометрические фигуры … Научно-технический энциклопедический словарь
ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, геометрии, мн. нет, жен. (от греч. ge земля и metreo измеряю). Отдел математики, в котором изучаются пространственные формы, их измерение и взаимное расположение. Элементарная геометрия. Аналитическая геометрия (пользующаяся методами… … Толковый словарь Ушакова
ГЕОМЕТРИЯ — (от гео. и. метрия), часть математики, изучающая пространственные формы (например, фигуры и тела), их отношения (например, взаимное расположение) и их обобщения. Зарождение геометрии относится ко 2 му тысячелетию до нашей эры, в… … Современная энциклопедия
геометрия — сущ., кол во синонимов: 9 • астероид (579) • линиолонгиметрия (2) • линиометрия (2) … Словарь синонимов
геометрия — – правильная форма авто. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь
геометрия — конфигурация геометрическая форма — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы конфигурациягеометрическая форма EN geometry … Справочник технического переводчика
Что такое геометрия? Наука геометрия
Геометрия является важной частью математики, которую начинают изучать в школах с 7 класса в качестве отдельного предмета. Что такое геометрия? Что она изучает? Какие полезные выводы можно из нее извлечь? Все эти вопросы подробно рассматриваются в статье.
Понятие о геометрии
Вам будет интересно: Гудериан Гейнц: биография, личная жизнь, семья, карьера
В ходе своего развития геометрия обзавелась набором понятий, которыми она оперирует с целью решения различных задач. К таким понятиям относятся точка, прямая, плоскость, поверхность, отрезок, окружность, кривая, угол и другие. Основой этой науки являются аксиомы, то есть концепции, связывающие геометрические понятия в рамках утверждений, которые принимаются в качестве истинных. На основании аксиом строятся и доказываются теоремы.
Когда появилась эта наука
Вам будет интересно: «Временный» или «временной»: как правильно? Разница между словами
Что такое геометрия с точки зрения истории? Здесь следует сказать, что она является очень древним учением. Так, ее использовали древние вавилоняне при определении периметров и площадей простых фигур (прямоугольников, трапеций и др.). Развита она была и в Древнем Египте. Достаточно вспомнить знаменитые пирамиды, строительство которых было бы невозможно без знания свойств объемных фигур, а также без умения ориентироваться на местности. Отметим, что знаменитое число «пи» (его приблизительное значение), без которого невозможно определить параметры круга, было известно египетским жрецам.
Разрозненные знания о свойствах плоских и объемных тел были собраны в единую науку только во времена Античной Греции благодаря деятельности ее философов. Самым важным трудом, на котором основываются современные геометрические учения, являются «Элементы» Евклида, которые были им составлены приблизительно в 300 году до нашей эры. Около 2000 лет этот трактат являлся основой для каждого ученого, который занимался исследованием пространственных свойств тел.
В XVIII веке французский математик и философ Рене Декарт заложил основы так называемой аналитической науки геометрии, которая описывала с помощью численных функций любой пространственный элемент (прямую, плоскость и так далее). С этого времени начинают появляться многие ветви в геометрии, причиной существования которых является пятый постулат в «Элементах» Евклида.
Евклидова геометрия
Что такое геометрия Евклида? Это достаточно стройное учение о пространственных свойствах идеальных объектов (точек, прямых, плоскостей и т.д.), которое основывается на 5 постулатах или аксиомах, изложенных в труде под названием «Элементы». Аксиомы приведены ниже:
Евклидова геометрия составляет основу любого современного школьного курса по этой науке. Более того, именно ею человечество пользуется в ходе своей жизнедеятельности при конструировании зданий и сооружений и при составлении топографических карт. Здесь важно отметить, что набор постулатов в «Элементах» не является полным. Он был расширен немецким математиком Давидом Гильбертом в начале XX века.
Виды евклидовой геометрии
Мы разобрались, что такое геометрия. Рассмотрим, какие ее виды бывают. В рамках классического учения принято выделять два вида этой математической науки:
Неевклидовы геометрии
Что такое геометрия в ее широком понимании? Помимо привычной нам науки о пространственных свойствах тел, существуют также неевклидовы геометрии, в которых пятый постулат в «Элементах» нарушается. К ним относятся эллиптическая и гиперболическая геометрии, которые были созданы в XIX веке немецким математиком Георгом Риманом и русским ученым Николаем Лобачевским.
Изначально полагали, что неевклидовы геометрии имеют узкую область применения (например, в астрономии при изучении небесной сферы), а само физическое пространство является евклидовым. Ошибочность последнего утверждения показал Альберт Эйнштейн в начале XX века, разработав свою теорию относительности, в которой он обобщил понятия пространства и времени.
Геометрия в школе
Как было сказано выше, изучение в школе геометрии начинается с 7 класса. При этом школьникам демонстрируют основы планиметрии. Геометрия 9 класса уже включает изучение трехмерных тел, то есть стереометрию.
Главная задача школьного курса состоит в том, чтобы развить у школьников абстрактное мышление и воображение, а также научить их мыслить логически.
Многие исследования показали, что при изучении этой науки у школьников наблюдаются проблемы с абстрактным мышлением. Когда формулируется для них геометрическая задача, они часто не понимают ее суть. У старшеклассников к проблеме с воображением добавляются трудности понимания математических формул для определения объема и площади поверхности разверстки пространственных фигур. Часто старшеклассники при изучении геометрии 9 класса не знают, какой формулой следует воспользоваться в конкретном случае.
Школьные учебники
Существует большое количество учебных пособий для обучения школьников этой науке. Одни из них дают только базовые знания, например, учебники Л. С. Атанасяна или А. В. Погорелова. Другие преследуют цель углубленного изучения науки. Здесь можно выделить учебник А. Д. Александрова или полный курс геометрии Бевза Г. П.
Поскольку в последние годы для сдачи всех экзаменов в школе введен единый стандарт ЕГЭ, стали необходимы учебники и решебники, которые позволяют ученику быстро самостоятельно разобраться с необходимой темой. Хорошим примером таких пособий можно назвать геометрию Ершовой А. П., Голобородько В. В.
Любой из названных выше учебников имеет как положительные, так и отрицательные отзывы со стороны учителей, поэтому преподавание в школе геометрии часто осуществляется с использованием нескольких учебников.