Гематоэнцефалического барьера что это
Гематоэнцефалического барьера что это
Гематоэнцефалический барьер разграничивает нервную систему от общего кровотока, обеспечивая постоянную и оптимальную по химическому составу среду для ее функционирования.
Межклеточная жидкость занимает 15 % общего объема мозга и окружает нейроны и нейроглию. Схема межклеточных пространств представлена на рисунке ниже. Секретируемая сосудистыми сплетениями спинномозговая жидкость циркулирует в системе желудочков и субарахноидальном пространстве и через пахионовы грануляции проникает в синусы твердой мозговой оболочки.
Затем спинномозговая жидкость путем пассивного транспорта через выстилающую стенки желудочков эпендимоглиальную мембрану проходит во внеклеточные пространства мозга, где смешивается с межклеточной жидкостью, продуцируемой клетками капилляров, и в процессе клеточного метаболизма распространяется через пиаглиальную мембрану в субарахноидальное пространство. «Стекание» спинномозговой жидкости компенсирует отсутствие лимфатических сосудов в ЦНС.
Единственная составляющая спинномозговой жидкости, которая не проникает через гематоэнцефалический барьер,— метаболическая жидкость. В ее состав входят нейромедиаторы, высвобожденные нейронами и не подвергнувшиеся обратному захвату, что обусловливает наличие неспособных преодолеть гематоэнцефалический барьер медиаторов и их метаболитов в субарахноидальном пространстве.
Межклеточные пространства головного мозга.
Стрелками показаны направления циркуляции спинномозговой жидкости.
Компоненты спинномозговой жидкости распределены следующим образом (по результатам поясничной пункции):
• жидкость, продуцированная клетками сосудистых сплетений, — 60 %;
• жидкость, продуцированная клетками капилляров, — 30 %;
• метаболическая жидкость — 10%.
(А) Схематическое изображение барьера между кровью и спинномозговой жидкостью.
(Б) Ультраструктура эпителия сосудистого сплетения. В эпителиальных клетках расположены множество митохондрий и гранулярная эндоплазматическая сеть.
Клетки соединены плотными контактами в апикальной части.
Гематоэнцефалический барьер состоит из двух компонентов. Первый представлен барьером между кровью и спинномозговой жидкостью на уровне сосудистых сплетений, а второй — барьером между кровью и межклеточной жидкостью на уровне капилляров ЦНС.
а) Барьер между кровью и спинномозговой жидкостью. Барьер между кровью и спинномозговой жидкостью представлен эпендимальным эпителием сосудистых сплетений, который характеризуется следующими особенностями строения.
1. Практически все реснички замещены микроворсинками.
2. Клетки образуют плотные контакты. Именно эти места плотного соединения мембран клеток разграничивают кровь и спинномозговую жидкость.
3. Клетки эпителия содержат ферменты, обеспечивающие транспорт ионов и продуктов метаболизма.
б) Барьер между кровью и межклеточной жидкостью. Барьер между кровью и межклеточной жидкостью представлен эндотелием капилляров ЦНС, который характеризуется следующими особенностями строения.
1. Эндотелиоциты образуют плотные контакты.
2. В состав клеток входит небольшое количество пиноцитозных пузырьков, а также отсутствуют фенестрации.
3. Транспортные системы в клетках аналогичны таковым в эпителии сосудистых сплетений.
(А) Схема барьера между кровью и межклеточной жидкостью.
(Б) Капилляр центральной нервной системы. На поперечном срезе показан одиночный эндотелиоцит, полностью окружающий просвет сосуда.
Края эндотелиоцитов образуют плотный контакт. Эндотелиоцит окружен базальной мембраной. Капилляр окружен отростками астроцитов.
в) Функции перицитов капиллярного русла. Перициты и клетки эндотелия связаны с помощью щелевидных контактов. В ходе исследований культур клеток было достоверно доказано, что перициты играют ключевую роль в ангиогенезе капилляров, а также в формировании и поддержании плотных контактов между эндотелиоцитами.
Перициты принимают участие в саморегуляции мозгового кровотока за счет того, что на их поверхности экспрессируются рецепторы к вазоактивным медиаторам: норадреналину, вазопрессину, ангиотензину II. При хронической артериальной гипертензии развиваются гипертрофия и гиперплазия перицитов, а также происходит внутриклеточная продукция цитоплазматических сократительных филаментов, что обеспечивает компенсаторное расширение капилляров.
Поверхность клеточной стенки перицитов способна обеспечивать связывание протромбинового комплекса, за счет чего перициты могут принимать участие в процессе свертывания крови.
Кроме того, перициты обладают способностью к фагоцитозу и свойствами иммунорегуляторных цитокинов.
Общая площадь капиллярного русла головного мозга соответствует размерам теннисного корта! Наличие такой огромной поверхности объясняет тот факт, что мозг потребляет 20 % поступающего кислорода. Плотность капилляров коры головного мозга можно оценить на изображении латексного слепк.
г) Функции гематоэнцефалического барьера:
• Контроль проникновения метаболических веществ. Основной источник питания нейронов — глюкоза. При повышении уровня глюкозы в крови специфический белок-переносчик связывает ее, а при низком уровне — обеспечивает более активный захват.
• Предотвращение поступления в мозг токсических веществ и периферических нейромедиаторов, выделяемых вегетативными нервными окончаниями в системный кровоток.
Латексный слепок сосудов препарата мозга.
Корковые капилляры имеют вид извилистых белесоватых нитей.
д) Состояния, связанные с нарушением гематоэнцефалического барьера:
1. Пациенты с артериальной гипертензией подвержены приступам гипертонической энцефалопатии в связи с тем, что степень повышения давления превосходит компенсаторные способности стенок артериол. Вследствие такого повышения давления может произойти нарушение плотных межклеточных контактов эндотелия капилляров, что приводит к отеку мозга за счет быстрого выхода плазмы. Клинически эта ситуация проявляется сильной головной болью, рвотой и, в некоторых случаях, появлением судорог и развитием комы.
2. У пациентов с повышенным содержанием углекислого газа в крови (при заболеваниях дыхательной или сердечно-сосудистой системы, а также после хирургических вмешательств) причиной отека мозга даже при нормальном уровне артериального давления может стать расслабление мышечного слоя артериол. Данная ситуация клинически проявляется спутанностью сознания и сонливостью, в дальнейшем переходящими в кому.
3. Повреждения мозга (травмы или спонтанные кровоизлияния) приводят к отеку мозга вследствие осмотического повреждения тканей мозга (и других факторов).
4. Инфекционные заболевания мозга или его оболочек сопровождаются нарушением гематоэнцефалического барьера, предположительно из-за усиленного перемещения лейкоцитов в капиллярном русле мозга. Несостоятельность гематоэнцефалического барьера играет и положительную роль: стенки капилляров проницаемы для жирорастворимых антибиотиков.
Кроме того, капилляры опухолей мозга характеризуются наличием фенестраций, что позволяет идентифицировать злокачественное новообразование при помощи рентгеноконтрастного вещества, неспособного пройти через капилляры непораженных отделов мозга.
Редактор: Искандер Милевски. Дата публикации: 10.11.2018
Гематоэнцефалический барьер и лекарства
Поделиться:
Нормальная деятельность головного мозга возможна лишь в условиях биохимического и электролитного гомеостаза (равновесия). Поэтому жизненно необходимо, чтобы мозг был надежно защищен от попадания веществ, способных изменить работу центральной нервной системы. Для этого и существует гематоэнцефалический барьер, или сокращенно ГЭБ.
Для чего нам нужен ГЭБ
ГЭБ — это полупроницаемая мембрана, которая отделяет мозг от кровеносного русла. Этот барьер состоит из эндотелиальных клеток, астроцитов и перицитов. Мембрана имеет особо «плотное» расположение капилляров, что и является основой барьера, предохраняющего мозг от проникновения большинства веществ, циркулирующих в крови.
ГЭБ сохраняет специфическую внеклеточную среду вокруг нейронов, поддерживая концентрацию аминокислот, аскорбиновой и фолиевой кислот даже при снижении их концентрации в сыворотке крови.
Читайте также:
Инновации в нейронауках
Кроме того, абсолютно необходимо, чтобы никакие патогенные микробы не могли попасть в головной мозг. Иначе наступает катастрофа. Типичный пример: микроб менингита, так называемый менингококк, вполне мирно может проживать в носоглотке, но при ослаблении защитных сил (и нарушении проницаемости ГЭБ) менингококк попадает в центральную нервную систему, поражая оболочки головного мозга и вызывая потенциально смертельную болезнь — гнойный менингит.
Повышение проницаемости ГЭБ также характерно и для других заболеваний нервной системы. Например, при рассеянном склерозе активированные Т-лимфоциты легко преодолевают ГЭБ и вызывают поражение мозга.
Как ГЭБ работает на практике
Проницаемость гематоэнцефалического барьера напрямую зависит от величины молекул. Маленькие молекулы кислорода, углекислого газа проходят вообще без проблем. Но чем крупнее молекула вещества, тем труднее ей пробраться. Впрочем, существуют способы облегчить эту задачу. Например, давно замечено, что жирорастворимые вещества диффундируют через барьер на ура. Это свойство используется при создании некоторых лекарств, например снотворных барбитуратов.
Интересна ситуация с таким важным веществом, как глюкоза. Пониженный ее уровень — гипогликемия мозга — проявляет себя в виде головной боли, нарушений внимания, спутанности сознания и эпилептических приступов. При этом концентрация сахара в крови может оставаться нормальной (!). Тут «заупрямился» ГЭБ и возникли нарушения в системе переноса глюкозы.
Кстати, все больше и больше свидетельств, что классическая эпилепсия, происхождение которой в известной мере остается загадкой для врачей, является «болезнью ГЭБ», когда нарушен транспорт глюкозы в тканях мозга.
ГЭБ и фармакология
Давайте сразу уясним, что большинству лекарств незачем преодолевать этот барьер. К примеру, средство от расстройства желудка должно держаться подальше от мозга и заниматься своим прямым делом в пищеварительном тракте. Но если возникло серьезное поражение центральной нервной системы, «тогда мы идем к вам!».
Антибиотикам желательно добраться до мозга при инфекционных поражениях, противоконвульсивным препаратам — для лечения судорог и, уж конечно, нейролептикам — для купирования острых психозов. Эффективность вышеперечисленных препаратов напрямую зависит от проницаемости ГЭБ.
А вот при болезни Паркинсона, для которой характерен недостаток допамина в мозге, не удастся восполнить этот дефицит ни таблетками, ни уколами, потому что допамин через ГЭБ, к сожалению, не проходит. Хотя, например, предшественник допамина — Л-допа — способен преодолеть ГЭБ. Но все-таки это не совсем то, что нужно.
Кстати, похожая ситуация при депрессиях, в патогенезе которых большую роль играет глютамат. Глютамат также не проникает через через ГЭБ. Поэтому глотать его бессмысленно.
Когда ГЭБ может рухнуть?
Существует ряд ситуаций, при которых страдает ГЭБ и мозг остается незащищенным. Это может случиться при высоком артериальном давлении, поэтому стоит держать его под контролем. Внутривенное введение гиперосмолярных растворов также несет в себе угрозу нарушения барьера. Длительное воздействие микроволнового излучения и радиации доказанно считается причинами нарушений ГЭБ. Инфекции центральной нервной системы типично дают сбои в работе барьера. Также нарушения возможны при травмах мозга, его ишемии, воспалении и инсультах.
А если ГЭБ не пускает, но нам очень нужно?
Существует ряд заболеваний головного мозга, когда жизненно важно пропихнуть лекарство в определенный участок мозга. Чаще всего это онкология. Для этого используется метод «локального открытия ГЭБ». Лучше всего работают маннитол и его аналоги, которые вводятся в артерию мозга под контролем компьютерного томографа.
Маннитол открывает ГЭБ примерно на час, и за это время опухоль подвергается воздействию химиотерапии. С уходом маннитола дверь в мозг закрывается. И правильно — нельзя оставлять мозг без защиты.
Подобным эффектом открытия ГЭБ обладают Лейкотриен С4 и брадикинин. В определенной дозе ГЭБ открывает и гистамин. Кстати, «закрыть дверь» за гистамином можно его антиподом — цимедином. Имейте в виду, что все эти препараты вводятся прицельно в надлежащий кровеносный сосуд. Если принимать их в виде таблеток или инъекций, результата не будет.
Информация для простого пациента
Не ведитесь на рекламу деятелей «народной медицины», утверждающих, что нашли средства, улучшающие состояние психики. Далеко не всякая таблетка, вами проглоченная, вообще доберется до головы. На страже вашего мозга стоит ГЭБ, и чаще всего это только на пользу.
Гематоэнцефалический барьер
Мозг является эпицентром электрофизиологической активности. Он объединяет информацию из внешней среды с сигналами из внутренней среды для выполнения определенных действий. Учитывая все специфические процессы, которые происходят на уровне нейронов, крайне важно, чтобы химическая среда, в которой работают эти клетки, имела определенные показатели. Нужно, чтобы к нейронам пропускались одни вещества, которые необходимы мозгу, и задерживались другие, которые для него опасны. Это основная функция гематоэнцефалического барьера (сокращенно – ГЭБ).
Что такое гематоэнцефалический барьер?
Согласно медицинскому определению, гематоэнцефалический барьер представляет собой избирательно проницаемую мембрану, регулирующую прохождение множества больших и малых молекул в микросреду нейронов. Это достигается благодаря множеству клеточных транспортных каналов, разбросанных по мембране.
Все эти каналы нужны мозгу для получения питательных веществ, строительных материалов и поддержания оптимальной работы нейронов.
История изучения ГЭБ
Впервые о ГЭБ стало известно после работ П. Эрлиха, изучавшего проникновение красителей в ткани.
Он отметил в экспериментах с животными, что при введении краски в кровь, структуры мозга не окрашиваются. А при введении краски в спинномозговой канал – окрашивание происходит, но краска не попадает в кровь и ткани тела. Был сделан логичный вывод – существует некий барьер, который разделяет ликвор и кровь. В 1900 г впервые был использован термин ГЭБ.
В дальнейшем знания о ГЭБ расширились, было определено, что существует барьер и между кровью и ликвором и между плазмой и периферическими нервами.
Структура гематоэнцефалического барьера
Мозг имеет большую сеть артериальных и венозных сосудов, соответственно, приносящих кровь к тканям мозга и отводящих ее. Однако, обмен веществ происходит на уровне капилляров. И внутренняя, и внешняя поверхность сосуда выстланы ключевыми структурами, которые формируют избирательный обмен.
Эндотелиальные клетки прикрепляются друг к другу очень плотно. Следовательно, эндотелий функционирует как непроницаемый барьер между просветом капилляра и тканью мозга. Необходимые вещества (вода, глюкоза, кислород, ионы и тд) передаются через специальные каналы. Остальные соединения, которые могут быть опасны, не проникают через гематоэнцефалический барьер.
Неотъемлемыми компонентами в формировании гематоэнцефалического барьера считаются перициты. Они окружают эндотелиальные клетки капилляров и способны сокращаться, чтобы регулировать капиллярный кровоток и количество крови, протекающей через капилляры.
Ключевые функции гематоэнцефалического барьера
Гематоэнцефалический барьер действует как дополнительная граница между циркулирующей кровью и внеклеточным пространством мозга. Барьер является высокоселективным, то есть он позволяет только определенным веществам проникать из кровотока в мозг. Эта функция защищает мозг от токсинов, патогенов и даже циркулирующих нейротрансмиттеров (например, глутамата), который может быть потенциально вредным для нейронов, если их уровень становится слишком высоким. Только вода, определенные газы (например, кислород) и жирорастворимые вещества могут легко диффундировать через барьер (другие необходимые вещества, такие как глюкоза, могут активно транспортироваться через гематоэнцефалический барьер с некоторым усилием).
Особые зоны гематоэнцефалического барьера головного мозга
Есть области мозга, где ГЭБ отсутствует. Эта особенность позволяет областям мозга ощущать и влиять на гомеостатические изменения в системном кровообращении. В результате мозг способен обнаруживать изменения в работе тела и осуществлять необходимые защитные физиологические процессы для смягчения этих действий.
Нарушения гематоэнцефалического барьера
Повреждения головного мозга, вызванные гипертонической энцефалопатией (длительным повышеннымдавлением), эпилептическим статусом или ишемией (длительной нехваткой кислорода), могут привести к нарушениям гематоэнцефалического барьера в течение двух-трех недель. Это разрушение барьера позволит молекулам, которым обычно запрещено контактировать с тканями мозга, попадать в микросреду центральной нервной системы. Одно из предположений о точном механизме, с помощью которого это происходит, состоит в том, что гипертония, ишемия или иные влияния приводят к повреждению эндотелия и последующему разрушению плотных соединений. Неопластические поражения также обеспечивают серьезные поражения гематоэнцефалического барьера. Одним из отличительных признаков опухолей является быстрый ангиогенез (рост сосудов). В случае опухоли мозга, новообразованные сосуды, лишены гематоэнцефалического барьера. Следовательно, участок опухоли также служит точкой входа нейротоксических агентов в нервную ткань.
Проблемы, которые формирует ГЭБ
Хотя ГЭБ – это важный слой защиты между периферическим кровообращением и мозгом, в определенных ситуациях проблематично, что доступ к мозгу является настолько ограниченным. Например, в редком случае, когда есть инфекция головного мозга, барьер очень затрудняет доставку противомикробных препаратов в мозг.
В этом случае возможно применение Глиатилина. Он проникает через ГЭБ и обладает способностью восстанавливать холинергическую систему мозга, нормализуя работу мозга.
Гематоэнцефалического барьера что это
Актуальность. Возрастное снижение неврологических и когнитивных функций становится все более серьезной проблемой для развитых стран в связи с увеличением числа пожилых людей. Морфологические и биохимические изменения в стареющем мозге уже долгое время являются предметом многих расширенных исследовательских проектов по всему миру. Однако решение вопроса о роли нарушения гематоэнцефалического барьера (ГЭБ) в патологических процессах при возрастных нейродегенеративных расстройствах остается нерешенным. Основные элементы гематоэнцефалического барьера и его поддерживающие механизмы, как и их изменения в процессе физиологического процесса развития и старения, а также возрастных нейродегенеративных расстройств (болезнь Альцгеймера, рассеянный склероз, болезнь Паркинсона, фармакорезистентная эпилепсия) изучены недостаточно. Требуют пересмотра в свете новых данных морфологические изменения клеточных элементов, таких, как эндотелиальные клетки, астроциты, перициты, микроглия, нейронные элементы) ГЭБ и нервно-сосудистые элементы, а также изменения барьера на молекулярном уровне, включая белки плотных контактов, адгезивные соединительные белки, мембранные транспортеры, базальные мембраны и внеклеточный матрикс.
Цель исследования. Изучить особенности гематоэнцефалического барьера мозга.
Материал и методы. В работе использованы наиболее показательные работы по динамике совершенствования представлений о гематоэнцефалическом барьере мозга и его особенностях в возрастном аспекте, а также микробной контаминации и малигнизации.
Результаты собственных исследований и их обсуждение.
Гематоэнцефалический барьер (ГЭБ) – это эволюционно законсервированное структурное и функциональное разделение между циркулирующей кровью и центральной нервной системой (ЦНС). Гематоэнцефалический барьер (ГЭБ) предотвращает попадание нейротоксичных компонентов плазмы, клеток крови и патогенов в мозг. В то же время ГЭБ регулирует транспорт молекул в центральную нервную систему (ЦНС) и из нее, что поддерживает строго контролируемый химический состав нейрональной среды, необходимый для правильного функционирования нейронов. Контролируя проницаемость нервной системы и из нее, ГЭБ играет решающую роль в точном регулировании нервных процессов. Однако очень мало известно о том, как регулируется гематоэнцефалический барьер (ГЭБ). Последние публикации и соответствующая литература позволили нам суммировать возрастные изменения ГЭБ по основным показателям: проникновение веществ, участвующих в регуляции трофического обеспечения нейронов; циркадный ритм функции ГЭБ; влияние и последствия дисфункции ГЭБ, вызванной нейродегенерацией и аутоиммунными заболеваниями ЦНС. Молекулярные и клеточные механизмы, лежащие в основе функционирования ГЭБ, влияют на физиологию транспорта через ГЭБ, эндотелий и перициты, а также регулируют периваскулярный и параваскулярный транспорт. Неврологические расстройства с первичным генетическим дефектом в клетках, ассоциированных с ГЭБ, являются яркой демонстрацией связи между распадом ГЭБ и нейродегенерацией. Многие авторы указывают на влияние генов, лежащих в основе наследования и / или повышенной восприимчивости к болезни Альцгеймера (AD), болезни Паркинсона (PD), болезни Хантингтона и бокового амиотрофического склероза (ALS), на ГЭБ в отношении других патологий и неврологических нарушений. Имеются данные о дисфункции ГЭБ, связанной с неврологическим дефицитом и другими патологиями, как рассеянный склероз, другие нейродегенеративные расстройства и острые расстройства ЦНС, таких как инсульт, черепно-мозговая травма, повреждение спинного мозга и эпилепсия. Следует подчеркнуть, что несмотря на технологические достижения в исследовании функций ГЭБ в живом человеческом мозге, а также на молекулярном и клеточном уровнях, остаются ключевые вопросы, на которые пока нет ответа.
Имеются данные, что сон способствует выведению метаболитов через ГЭБ. Огромную роль ГЭБ играет в метаболизме железа в нервной ткани. Железо необходимо практически для всех типов клеток и организмов. О высоком значении железа для функции мозга свидетельствует наличие рецепторов трансферрина на эндотелиальных клетках капилляров головного мозга. Транспортировка железа в мозг из системы кровообращения регулируется для извлечения железа эндотелиальными клетками капилляров головного мозга в условиях поддержания постоянства его концентрации, особенно в условиях дефицита железа, необходимого особенно во время развития мозга. Установлено, что ретроградный аксональный транспорт в черепно-двигательном нерве зависит от возраста и варьируется от почти незначительного в мозге новорожденного до высокого в мозге взрослого человека. На сегодняшний день отсутствуют данные о том, что пептиды, такие как инсулин, энкефалины проходят через ГЭБ с помощью определенных транспортных систем. Поскольку площадь поверхности ГЭБ в 5000 раз больше, чем площадь поверхности барьера гемато-спинномозговая жидкость, маловероятно, что транспорт через барьер гемато-спинномозговая жидкость обеспечивает быстрое распределение циркулирующих пептидов в интерстициальном пространстве головного мозга. Циркулирующие нейропептиды могут потенциально быстро влиять на активность мозга, не пересекая ГЭБ и не проникая в интерстициальные или синаптические пространства мозга. Понимание механизмов транспорта циркулирующих питательных веществ и гормонов через стенку капилляров головного мозга через ГЭБ важно, поскольку наличие этих веществ в мозге влияет на ряд церебральных метаболических путей. Например, использование мозгом глюкозы, кетоновых тел и аминокислот с разветвленной цепью или производство моноаминов, ацетилхолина, карнозина и нуклеозидов может при определенных условиях зависеть от транспорта через ГЭБ циркулирующих питательных веществ-предшественников. Стероидные гормоны и гормоны щитовидной железы легко проходят через ГЭБ благодаря липидной связи и посреднической роли носителя, соответственно. Хотя стероидные гормоны и гормоны щитовидной железы прочно связаны белками плазмы, гормон, связанный с белками, а не свободная (диализируемая) часть, является основной фракцией плазмы, транспортируемой через ГЭБ. Что касается циркулирующих пептидов, имеющиеся данные указывают на то, что пептиды быстро распределяются в интерстициальном пространстве головного мозга околожелудочковых органов головного мозга, то есть примерно в шести небольших областях вокруг желудочков, в которых отсутствует ГЭБ. И наоборот, отсутствие пептидных носителей предотвращает быстрое распределение пептидов в подавляющем большинстве интерстициальных или синаптических пространств мозга.
Однако недавние исследования показывают, что некоторые пептиды, например, инсулин, могут связывать специфические рецепторы на кровяной стороне ГЭБ и, таким образом, влиять на клетки нейральной поверхности ГЭБ, без прохождения пептида через стенку капилляров.
Заключение Признание новых участников и инициаторов процесса нейродегенерации на уровне ГЭБ может открыть новые возможности для новых терапевтических подходов к лечению многочисленных хронических нейродегенеративных расстройств, в настоящее время не имеющих патогенетически эффективных лекарств. В то время как роль гематоэнцефалического барьера (ГЭБ) все больше признается в разработке методов лечения нейродегенеративных расстройств, на сегодняшний день существует несколько стратегий, которые позволяют доставлять лекарства, не пересекающиеся с ГЭБ, непосредственно к месту их действия, мозгу. Подходы к влиянию на ГЭБ глубоко исследуются в связи с патологией: среди основных важных заболеваний ЦНС внимание уделяется применению наномедицинских препаратов для лечения нейродегенеративных расстройств (болезнь Альцгеймера, Паркинсона и Хантингтона) и на другие патологии головного мозга, такие как эпилепсия, инфекционные заболевания, рассеянный склероз, лизосомные нарушения накопления, инсульты. Передача нервных сигналов в центральной нервной системе (ЦНС) требует строго контролируемой микросреды. Клетки на трех ключевых интерфейсах образуют барьеры между кровью и ЦНС: гематоэнцефалический барьер (ГЭБ), гематоэнцефалический барьер и паутинный барьер. ГЭБ на уровне эндотелия микрососудов головного мозга является основным местом обмена между кровью и ЦНС. На современном этапе обобщены структура и функция ГЭБ, физический барьер, образованный эндотелиальными плотными контактами, и транспортный барьер, являющийся результатом мембранных транспортеров и везикулярных механизмов. Также установлены роли ассоциированных клеток, особенно астроцитарных глиальных клеток, перицитов и микроглии. Имеются данные по эмбриональному развитию ГЭБЮ но его изменения при патологии изучены недостаточно. ГЭБ подвержен краткосрочному и долгосрочному регулированию, которое может нарушаться при патологии. Любая программа по таргетной доставке лекарств в ЦНС должна учитывать особенности ГЭБ.
Работа выполнена при финансовой поддержке Международного Медицинского Научно-образовательного Центра, (Владивосток, Россия)